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Highlights
To fully understand biological in-

teractions and evolution, they must

be studied together.

There are few generic models and

approaches able to unite the short

timescales of interactions un-

raveled by systems biologists and

ecologists, with the longer time-

scale of evolution.

We propose an approach to incor-

porate short timescale interaction

networks with longer timescale

evolutionary studies, by super-

imposing evolutionary information

on interaction networks, which we

name phylosystemics.

Applications of phylosystemics

have the potential to enhance

knowledge of major evolutionary

transitions and the evolution of

ecosystems.
We define phylosystemics, a multidisciplinary strategy uniting short timescale interaction

studies from systems biologists and ecologists with the longer timescale studies familiar to

evolutionary biologists, taking advantage ofmethods fromnetwork sciences. Phylosystemics su-

perimposes evolutionary information on entities/edges forming interaction networks produced

by systems biology and ecology. At the molecular level, phylosystemics could provide evidence

to infer and to time the evolution ofmolecular processeswithin a single branch of a phylogeny, in

particular between the first and last common ancestors of a group arising during a major evolu-

tionary transition. At the ecosystemic level, phylosystemics could culminate with the develop-

ment of multilayer temporal networks encompassing biotic and abiotic interactions, whose ana-

lyses could unravel ecological interactions with evolutionary consequences.

Interaction Networks in Biological Studies

If nothing in biology makes sense except in the light of evolution, nothing in the biological world ex-

ists in isolation. At all levels of biological organization, from molecules to ecosystems, interactions

shaping biological organization and processes at a given time contribute to further evolutionary dy-

namics. Therefore, interactions and evolution must be studied together.

Interaction networks (see Glossary) are commonly used in diverse biological studies (e.g., transcrip-

tomics, proteomics, metagenomics, microbiology, protistology, developmental biology, ecology,

and systems biology), and thus are of interest to many biologists. These interaction networks model

organizations and processes by representing a diversity of interactions by edges between nodes cor-

responding to biotic and sometimes to abiotic components [1]. Because such interaction networks

feature short-timescale dynamics, their typical questions are not primarily questions related to evolu-

tionary biology.

For example, cellular gene coexpression networks (GCNs) are undirected graphs composed of no-

des and edges, which represent genes and mutual coexpression relationships, respectively [2]. GCNs

are used for various purposes, including the identification of regulatory genes, candidate disease

gene prioritization, and functional gene annotation [3], occasionally strengthened by the conserva-

tion of a given coexpression profile across several species [4,5]. Other examples: gene regulatory net-

works (GRNs), and in particular transcriptional regulatory networks, consist of nodes representing

regulatory components, typically transcription factors, which are connected to regulated target

genes, themselves under the influence of the DNA-binding sites of the transcription factors (and

some works include kinases and additional layers of regulation of transcription factors by noncoding

RNAs [6]). GRN studies firstly seek to understand how cells respond to internal and external condition

changes. Protein–protein interaction networks (PPIs) illustrate yet another kind of interaction

network. PPIs connect proteins (nodes) that interact with edges, and are mostly used to decipher

cellular processes [7]. Similarly, at a larger spatial scale, co-occurrence networks (CNs) represent in-

dividual microbes [operational taxonomic units (OTUs), or sequences] as nodes, connected by edges

when significant correlations are found in the distributions of these taxa across samples. CNs are

currently inferred for a wide range of microbial communities, such as soils, oceans, or hosts. CNs

are used to investigate various types of ecological interaction (parasitism, mutualism, etc.) between

taxa [8], to determine their drivers [9], and to gain insights into the organization of communities,

notably by identifying keystone species and modules with niche-specific communities [10–12]. All

of these networks are also commonly studied by systems biologists or ecologists to identify their prin-

ciples of biological organization [1,10–12]. Here, we propose (i) to formalize phylosystemics as an
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Glossary
Betweenness: a centrality mea-
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emergent field aiming to track the evolution of biological processes by general approaches of graph

theory, then (ii) we demonstrate that phylosystemics is timely and actionable, and (iii) illustrate some

major pay-offs expected from this approach.

sure for a node in a graph. In the
normalized form, this is the pro-
portion of shortest paths between
all possible pairs of nodes in a
connected component that pass
through this node. A betweenness
close to 1 is indicative of a central
gene, whereas close to 0 is more
peripheral.
Co-occurrence networks (CNs):
represent individual microbes
(OTUs or sequences) as nodes,
connected by edges when signif-
icant correlations are found in the
distributions of these taxa across
samples.
Constraint satisfaction problem
(CSP): Any problem that can be
formalized using a finite number
of variables, each of them having a
finite set of values (its domain) and
a finite set of constraints within
these variables (e.g., ‘being
different’, ‘having the same par-
ity’). A Sudoku puzzle is a simple
example in which a set of variables
(empty squares) that store solu-
tions can be filled using a set of
possible discrete values (the
numbers 1–9), where the choice of
solution for a variable is based on
a given set of limitations (the rules
of the game, numbers in pre-
determined squares).
Degree: the number of edges
connected to a given node in a
graph. In a directed graph these
Interaction Networks in Evolutionary Inferences

There are few generic models and approaches able to unite the short timescales of interactions, un-

raveled by systems biologists and ecologists, with the longest timescale of evolution familiar to evolu-

tionary biologists. However, a novel interdisciplinary approach, that we call phylosystemics, can

generalize evolutionary analyses of interactions using networks, and is arguably already in the mak-

ing. Phylosystemics is comprised of two terms: ’phylo-’, which means ’lineage’ (and for this reason

echoes with the established fields of phylogenetics and phylogenomics, possibly attracting evolu-

tionary biologists with this particular background), and ’-systemics’, which stands for ‘systems’ (which

echoes with systems biology and could attract systems biologists and ecologists toward this new

field).

More precisely, phylosystemics consists of adding evolutionary knowledge (typically, but not only,

from orthology and homology) onto nodes of interaction networks (Box 1) to analyze the evolution

of processes involving biological entities (type 1 phylosystemics), including the evolution of evolu-

tionary processes (type 2 phylosystemics). Importantly, phylosystemics can be applied throughout

all scales of biological organization because interaction networks are now constructed at all scales,

from the molecular level to the ecosystemic level. Therefore, phylosystemics provides a general

framework to tackle multiple, distinct questions related to the evolution of life on Earth. To do so

in a generalized way, phylosystemics can exploit the information contained in increasingly abundant

networks, by focusing on two (complementary) problems of graph theory.

First, phylosystemics can use the formalism of a general covering problem to identify subgraphs in

which nodes share specific evolutionary labels within individual interaction networks. The covering

approach was notably pioneered by Qin et al. [13]. As early as 2003, these authors used an unortho-

dox type of phylogenetic profile for orthologous proteins called ‘isotemporal categories’, describing

the distribution of orthologs across six broad taxonomic categories (of which only some were mono-

phyletic.). Qin et al.mapped these unorthodox evolutionary labels onto the yeast protein interaction

network in order to test for the presence of preferential connections between nodes with similar
Box 1. Evolutionary Labelling of Interaction Networks

In molecular networks, typically, each node of the network represents a molecule (e.g., a gene, a protein) that

can be associated with a gene or protein family, for example, by sequence similarity network (SSN) analyses

[63]. This clustering produces a first evolutionary label, for each node of interaction networks, for example,

its belonging to ‘homologous family x’. Next, a relative dating of the origin of each homologous family can

be achieved. This first requires testing whether the gene family has been laterally transferred. There are

many approaches for LGT detection, including quick SSN-based approaches [64] and state-of-the-art

maximum likelihood (ML) phylogenetic trees and network approaches. The identification of LGT events for

these families provides additional evolutionary labels for the nodes of the interaction networks: transferability

of the family, and duplicability of the family, since homologous genes present in multiple copies in one species

or lineage, but not as a result of LGT, can be further distinguished as (in/out)-paralogs.

Combining the definition of homologous families with the LGT detection approach allows one to associate the

origin of each gene family with a certain phylogenetic depth given a reference species tree. Typically, for gene

families unaffected by LGT, this ‘dating’ is often realized with the Dollo parsimony approach implemented in

Count, using an accepted reference species tree at the time of the analysis, as a backbone. By contrast, gene

families affected by LGT for which donors and hosts can be inferred should be dated separately after careful

human inspection to remove possible confounding effects on their phylogenetic depth (i.e., to avoid consid-

ering a taxonomically widespread family as phylogenetically old, when some distant lineages have in fact

recently acquired the genes via LGT).

this can be separated to in-degree
and out-degree, for edges
directed into the node or out of
the node respectively.
Endosymbiont gene transfer
(EGT): the transfer of genes from
an endosymbiont to its host
genome.
Gene coexpression networks
(GCNs): are undirected graphs
composed of nodes and edges,
which represent genes andmutual
coexpression relationships,
respectively.
Gene regulatory networks
(GRNs): consist of nodes repre-
senting regulatory components.
Interaction networks: networks
representing a diversity of in-
teractions by edges between no-
des corresponding to biotic and
sometimes to abiotic compo-
nents, in order to model organi-
zations and processes.
ITSNTS hypothesis: the ’It’s the
song, not the singers’ hypothesis
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proposed by Doolittle and Inkpen
suggests that patterns of interac-
tion (songs) can be selected as
units, even when the entities in
interaction (singers) change.
Lateral gene transfer (LGT): the
transfer of genes between genetic
entities.
Neighborhood: the neighbor-
hood of a node in a graph is the
subgraph induced by all vertices
adjacent to that node.
Operational taxonomic units
(OTUs): A group of inidivudals
that are similar based on chosen
criteria, not nessicarily limited to
taxonomic categories (e.g., or-
ganisms clustered based on small
subunit 16s rRNA sequence simi-
larity above 97% identity).
Protein–protein interaction net-
works (PPIs): connect proteins
(nodes) that interact by edges and
are mostly used to decipher
cellular processes.
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phylogenetic profiles – that were expected if the network had recorded some evolutionary signals

rather than evolved via ahistorical connections. Qin et al. then used these isotemporal category labels

to retrace the evolution of the yeast PPI network since the last universal common ancestor (LUCA) as a

series of temporal stages of additions of clusters of connected nodes. They polarized these stages by

assuming that taxonomically broader profiles indicated sets of the more ancient nodes connected by

the more ancient edges, according to the accepted phylogeny of species at the time of their analysis.

They concluded that the growth pattern of the yeast PPI network had registered a series of major

evolutionary events, in particular the endosymbiotic origins of eukaryotes.

Second, phylosystemics can use the general concept of graph homomorphism to identify evolu-

tionary conserved subgraphs, corresponding to shared biological processes, found across sets of

interaction networks (Figure 1 and Box 2).

By our definition, phylosystemics expands over two other kinds of network studies related to evo-

lution. Firstly, phylosystemics encompasses studies that focused on the impact of general evolu-

tionary processes on interaction network evolution (e.g., how gene duplication affects the structure

of gene regulatory networks, etc. [14,15]). Such studies typically belong to type 2 phylosystemics, of

which Wittkopp et al. [16] represents an early example. These authors investigated the general

evolutionary processes of cis- and trans-regulatory changes involved in the evolution of divergent

gene expression in two closely related species of Drosophila. Accordingly, their work provided gen-

eral insights into the evolution of gene regulatory networks, rather than explaining the evolution of

specific biological pathways. Likewise, in 2005, He and Zhang produced another notable type 2 phy-

losystemics analysis [17]. It consisted of mapping evolutionary information (paralogy) and functional

information onto the yeast PPI network to analyze the topological distribution of these labels in or-

der to test which of three possible general models of molecular evolution (subfunctionalization,

neofunctionalization, or subneofunctionalization) would better explain the yeast PPI network topol-

ogy. He and Zhang concluded that the general process of subneofunctionalization better ac-

counted for these data. Whereas this early work described a general evolutionary process, it did

not track the evolution of specific biological processes/pathways performed by the yeast proteins,

nor did it study the distribution of these biological processes and their resulting phenotypes across

the tree of life. More recently, in 2017, Yang and Wittkopp reported that the architecture of regu-

latory networks, in particular the connectivity of genes in transcriptional regulatory networks, influ-

enced regulatory evolution in Drosophila [18]. This study focused on centralities, comparing gene

in-degree distributions and gene out-degree distributions across the networks of closely related

species, in order to uncover general principles governing the evolution of interactions. It concluded

that genes regulated by larger numbers of transcription factors tend to have fewer and smaller

changes in expression both within and between Drosophila species than genes regulated by

smaller numbers of transcription factors. Likewise, yet uncommonly ambitious in terms of taxonomy

for a phylosystemic type 2 study, Zitnik et al. investigated the evolution of resilience in 1840 protein

interactomes across the tree of life. They used strategies of randomized node removals, followed by

analyses of the extent of the resulting network fragmentation [19]. They concluded that interac-

tomes become more resilient (more robust to network failures) over evolutionary time, and reported

correlations between this resilience and ecological properties of the organisms under study. Zitnik

et al. also mapped orthology labels on the protein interactomes to compare the local connectivity

of orthologous pairs of proteins across networks (the connectivity between neighbor nodes of a

focal node, using a 2-hop subnetwork). They found that protein neighborhoods around orthologs

rewire and become increasingly different as the evolutionary distance between species increases,

typically becoming more interconnected in the species having undergone more genetic changes

since their last common ancestors.

Even though type 2 phylosystemic studies are increasingly popular, they remain far less often per-

formed than phylogenomics studies. Moreover, it is important to stress that, by definition, the scope

of phylosystemics, which is comprised of both type 1 and type 2 studies, is broader than the identi-

fication of general processes of network evolution as a result of molecular evolution. Phylosystemics

intends to track the evolution of all sorts of biological processes modelled by interaction networks,
178 Trends in Microbiology, March 2020, Vol. 28, No. 3
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Figure 1. Matching in Graph Comparison.

(A) Detecting common maximal subgraphs using a hierarchical type of label, while minimizing phylogenetic

distance. Evolutionary labels are at the left. Graphs G, Gʹ and Gʹʹ, which could be extracts of co-occurrence

networks from microbial communities, are boxed at the right, with node names indicated in Latin letters, and

associated phylogenetic labels indicated by Greek letters. The distance between two phylogenetic types, for

instance a and b, is called w(a,b) and is defined as the number of branches (or the sum of the branch lengths)

between a and b on the reference phylogenetic tree. The concept of subtype can be used to identify common

subgraphs of different graphs (sets or subsets of identical connections between Gi and Gj) based on node

labels. G cannot be embedded into Gʹ, but two subgraphs with a distance less than a fixed k = 3 in the label

phylogeny: G(H1) and G(H2) subgraphs of G, with H1 = (A, B, C, D) and H2 = (A, B, C, F), can be embedded into

G’. With ’/’ indicating mapping between nodes in G and Gʹ: (i) Mapping for G(H1) shows a distance of zero to

Gʹ because: for nodes (A / a) w(a, a) = 0, nodes (B / b) w(ε, ε) = 0, nodes (C / c) w(h, h) = 0, and nodes

(D / d) w(b, b) = 0, summing to a total distance of zero. (ii) Mapping for G(H2) shows a distance of two to Gʹ

because: for nodes (A / a) w(a, a) = 0, nodes (B / b) w(ε, ε) = 0, nodes (C / c) w(h, h) = 0, and nodes (F / e)

w(d, g) = 2, summing to a total distance of two. Because H1 minimizes the phylogenetic distance between

subgraphs, it will be preferred to H2. In that toy example, an isomorph co-occurrence pattern is detected

between microbial communities, described by G and Gʹ. The best embedding of G in Gʹʹ is found for G(H3) with

H3 = (A, B, C, F), although not a perfect embedding because it shows a phylogenetic distance of two. (iii)

Mapping for G(H3) shows a distance of two to Gʹʹ because: for nodes (A / a) w(a, a) = 0, nodes (B / b)

w(ε, ε) = 0, nodes (C / c) w(h, h) = 0, and nodes (F/ e) w(d, g) = 2, summing to a total distance of two. (B) The

concept of role in graph comparison. This concept can be applied to co-occurrence networks, where nodes

represent operational taxonomic units (OTUs), and are labelled based on their taxonomy. The concept of a role

can identify pairs of nodes in distinct networks, and define the proportion of their shared neighbors with

identical evolutionary labels. In Gi, node i has neighbors with lilac, purple, blue, and cyan labels, while in Gj

node j exchanges the lilac neighbor for a green neighbor, meaning that nodes i and j have a similar but

nonidentical role. The total number of neighbors does not affect this comparison, so the removal of the lilac

node would also mean nodes i and j had similar but nonidentical roles. This concept can be applied to any kind

of labelled graph, including functional labels.

Trends in Microbiology
whereas clearly ‘general processes of network evolution’ (type 2) constitute a subset of the biological

processes that evolved on Earth.

Furthermore, phylosystemics differs from a recent series of remarkable studies that used evolutionary

inferences to improve the construction of interaction networks. For instance, Castro et al. (2019) intro-

duced a learning approach for joint network inference using closely related datasets (i.e., gene reg-

ulatory networks from bacteria on the one hand and from yeasts on the other hand) to improve the

reconstruction of gene regulatory networks [20]. Their strategy was based on the reasoning that

gene regulatory networks are in part composed of evolutionarily shared subnetworks, conserved

across datasets. Thus, evolutionary conservation was typically and primarily a means towards better
Trends in Microbiology, March 2020, Vol. 28, No. 3 179



Box 2. Using the Constraint Satisfaction Problem (CSP)

CSP identifies matchings (similar sets of nodes and edges) between pairs of graphs (see Figure 1 in main text).

Nodes harbor labels which can be numbers (e.g., % of duplicated genes or of transferred genes within a gene

family), or also types (e.g., homology, orthology, paralogy classes, taxa). Types means that nodes can be

equipped with a partial order or simply a hierarchy, as for example with a phylogeny. The main operation is

graph homomorphism, which solves a typical problem: given two labelled graphs G andGʹ, and a phylogenetic

distance w(a,b), one must find a homomorphism from G to Gʹ compatible with the labels, that is, a mapping q

from the nodes of V(G) to V(Gʹ) satisfying:

(i) If x y is an edge in G, then q(x) q(y) is an edge of Gʹ

(ii) w(x,y) less than or equal to a given threshold k

If the edges are weighted (e.g., by the relative binding strength of a transcription factor in the case of GRNs),

weights should be preserved by q.

The same approach applies for the discovery of subgraphs: given two labelled graphs (G, w), (Gʹ, wʹ), CSP can

find an homomorphism from a subgraph of G into a subgraph of Gʹ, by maximizing some criterium such as the

size (e.g., number of shared labelled nodes in the subgraph), or minimizing some distance (e.g., the phyloge-

netic distance between subgraphs, or the difference in edge weights).

Increasingly general types of matching can be applied. First, the concept of role [65] can identify pairs of nodes

in distinct networks (one node in Gi of species i, another node in Gj of species j), and define, for this pair of

nodes, the proportion of their shared neighbors presenting identical evolutionary labels. A role score reaches

1 when node i in Gi and node j in Gj are surrounded by sets of nodes from the same gene families. Computing

the role scores for all pairs of nodes for all pairs of evolutionarily labelled GCN and PPI can readily identify

conserved interactions, such as pairs of nodes from two networks with high role scores, which significance

can be assessed by separate random shuffling of the evolutionary labels in each of the compared networks.

Importantly, nodes with the same role could themselves not be homologous: node i in Gi could belong to a

different gene family than node j in Gj, if there has been a nonhomologous replacement of that node in one

of the species. Thus, significantly high role scores can also be used to identify nonhomologous replacements

in interaction networks from different species. Analyses of directed graphs, such as GRN, may warrant specific

local optimization techniques, typically a node in graph i surrounded by similar neighbors than another node in

graph j will not necessarily constitute a pair of nodes with similar roles, if the edges connecting these nodes to

their neighbors present different rather than identical directions in Gi and Gj.

More broadly, the notion of subtype defines cases where labelled patterns of Gj are nested into or equivalent

to labelled patterns of Gi. Subtypes can be used to identify common subgraphs (sets or subsets of identical

connections between Gi and Gj), for any pairs of evolutionarily labelled GCN, GRN, and PPI, respectively.

Importantly, CSP approaches can be used not only to detect isomorphisms (subgraphs with identical patterns

of interactions), but also homomorphisms (subgraphs with significantly similar patterns of interactions and sets

of nodes) between networks. Focusing on homomorphisms rather than isomorphisms can be especially useful

when local rewiring has affected the topology of a network around focal nodes (as is the case for example, when

rapid cis-regulatory evolution rewires network structures across short evolutionary time scales). Hence, sub-

types identify identical or partly identical processes, and some of these subgraphs may correspond to func-

tional units [66], especially for phylogenetically broadly conserved subgraphs in agreement with [67–70],

etc. Using CSP formalism is realistic because it is very practical to deal with graph homomorphisms, as shown,

for instance, in applications to chemistry [71]. Software dealing with CSP, thanks to efficient filtering algorithms,

is available (e.g., Ilog at IBM). Moreover, good implementations (e.g., Cogitant: http://cogitant.sourceforge.

net.) are also available for such analyses on bipartite networks [39]. Another advantage of CSP is the ability to

reason on the set of all equivalent solutions, for example, by identifying common points shared between these

solutions that may be more robust, or to emphasize the sources of variation between solutions.

Trends in Microbiology
network construction, but not, in itself, an object of study. Evolutionary biology hypotheses were used

to enhance inferences of systems biology. Such studies might be considered by some as a third type

of phylosystemics (type 3 studies), but according to us their goals (improving networks) is still too con-

trasted with that of phylosystemics (tracking the evolution of biological processes) to necessarily fall

under the same general umbrella. For the time being, phylosystemics appears complementary to

these network approaches, but, if further developed, it might, with them, achieve a virtuous circle
180 Trends in Microbiology, March 2020, Vol. 28, No. 3
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by importing knowledge from systems biology to enhance evolutionary biology. The door for such a

fruitful cooperation is probably starting to open. For example, the work by Koch et al. conjugated the

three kinds of researches on interaction networks and evolutionary studies [21]. It aimed at intro-

ducing multispecies regulatory network learning, using phylogenetic information and a probabilistic

graphical model to improve regulatory network inference from transcriptomics data (type 3 phylosys-

temics study). Yet, Koch et al. also compared the predicted regulatory networks from different spe-

cies to identify general properties of network evolution (type 2 phylosystemics), unravelling correla-

tions between gene duplication with edge losses and edge gains rates. Finally, Koch et al. performed

a type 1 phylosystemics study on the evolution of stress-specific regulatory networks along the phy-

logeny of six yeast species. Specifically, they identified regulators with evolutionarily conserved roles,

featuring as conserved hubs in the most repressed and most induced modules. We believe it is time

to encourage these ambitious approaches at all evolutionary scales by recognizing phylosystemics as

a new field, whose operationality will next be demonstrated.
Phylosystemics Analyses Are Actionable
Phylosystemic Analyses Are Timely

Thedataare there.Moreover, available interactionnetworks appear suitedeven formacro-andmegascale

evolutionary analyses. Macroevolutionary comparisons of gene expression become more realistic every

day, since large-scale expression data are increasingly available for a diversity of species. Because expres-

sion profiles only cover a subset of all possible cellular conditions [4], at first sight, gene coexpression net-

works generated for different species and for different conditions might seem difficult to exploit in a

comparative analysis [4]. However, early analyses of moderately and distantly related organisms have

already shown theopposite [4,5]. First, coexpressionof functionally linkedgenes isoften conservedamong

organisms, as highly connected genes tend to be essential and conserved [4,22]. Second, GCNs are

modular. Most of the relations betweenmodules vary between organisms, and themore recently evolved

modules are associated with organism-specific functions [4]. Altogether, the above properties of GCNs

open the possibility of a sequential reconstruction of ancient GCNs for different phylogenetic depths,

one module at a time, based on distinct sets of partial (high quality) GCNs. The same is true for PPIs, as

they are also modular [23]. They largely evolve by duplication and divergence, with very slow evolutionary

rates for protein–protein interactions (2.6 G 1.6 changes 3 10–10 per PPI per year) [24], which preserves

clues of ancient interactions between proteins (since someof these ancient interactionswill still be observ-

able for some paralogs, at least). These properties encourage sequential inferences of ancient PPIs [13,23]

and graph comparisons of PPIs [7], even at a large evolutionary timescale, especially in eukaryotes. Like-

wise,macro- andmegaevolutionary analyses of gene regulatory networks appear promising, for other rea-

sons. Although GRNs (typically that of Escherichia coli) [25] present a highly interconnected, nested struc-

ture, complicating the identification of functional modules, and although GRN analyses usually focus on

motifs (significantly over-represented local network architectures) [25,26], evolutionarily conserved regula-

tory mechanisms have been described [27]. Inferences of robust yet necessarily partial ancient GRNs

appear possible.

Interestingly, all of these types of interaction network present variations, even between theDomains of life

[6,28,29], strongly suggesting that interaction networks contain some ancient evolutionary evidence about

the history of life. For example, the global architectures of PPIs and GCNs seem to be universal across life

forms, whereas their local network structures are much less constrained, and differ even among closely

related organisms [30]. The local wiring of GCNs would be constrained by selection, whereas their global

properties are not, which would reflect stochastic, nonselective processes [30,31]. For this reason, phylo-

systemics can focus on local architectures, typically identified by homomorphism and graph-covering ap-

proaches. Similarly, at the ecological scale, some evolutionary signal seems to be reflected in microbial

interactions between taxa [11]. Co-occurrence networks, often defined at various phylogenetic depths,

appear to be shaped by biotic and abiotic factors [8,32,33]. Environmental factors alone, while historically

considered as very strong determinants of community structure (as famously stated in the Baas-Becking

theory from 1934: ‘everything is everywhere, but the environment selects’), now appear to be incomplete

predictors of community structures [32]. Consistently, it has been proposed that phylogeny shapes some

aspects of the global plankton interactome [32], and that, in nature, co-occurring taxa are more closely
Trends in Microbiology, March 2020, Vol. 28, No. 3 181
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related than expected by chance [10,11]. Thus, CNs also likely encompass some underexploited evolu-

tionary information.

In addition, all the bioinformatic tools needed to implement this general strategy are currently avail-

able, therefore the evolutionary labelling of interaction networks is operational. Critical analyses are

possible because confidence metrics are commonly associated with edges of interaction networks.

For instance, RegulonDB [34] provides levels of confidence associated with its gene regulatory net-

works, and STRING [35] provides confidence scores associated with PPIs, etc. These metrics are often

used to identify the most reliable inferences. For example, Castro et al. considered edges in GRNs as

valid within a 0.5 precision cut-off [20], Yang and Wittkopp considered the presence or absence of

statistically significant [false discovery rate (FDR) = 0.05] differences in gene expression [18], etc.
Graph Covering Allows Separate Network Analyses for Super-Interaction Network
Inferences

The topology of evolutionarily labelled networks can be analyzed, in particular to infer past interac-

tion networks and specific types of change in these networks. As in Qin et al. [13], yet using phyloge-

netic assignations matching clades, a given interaction network, for example, a gene regulatory

network from a given species (even when partial, but high-quality) can be subjected to a decompo-

sition into rough temporal slices. This decomposition is achieved by (i) attributing a relative phyloge-

netic depth to all nodes (e.g., the node will receive the age of apparition inferred for its homologous

family), and then (ii) by assuming that nodes of a similar phylogenetic depth correspond to entities

that, if directly connected in present day networks, may have also interacted as early as the time at

which these entities appeared together [36,37]. This strategy will define, for each interaction network,

more or less disconnected phylogenetically dated subgraphs representing putative interactions at

given phylogenetic depths.

This first decomposition strategy has the potential to infer ancestral molecular interaction networks at

various evolutionary depths (e.g., in ancestral fungi) in a sequential fashion by aggregating inferences

separately generated from the networks of all available species (e.g., in various species of fungi). In

the same spirit that super-trees or super-networks are built in phylogenomics by aggregating phylo-

genetic information from independent phylogenetic markers, for example, aggregating information

from gene family trees which may not all overlap with each other in terms of their host taxa, phylosys-

temics proposes to aggregate inferences gathered from independent interaction networks to infer

super-interaction networks. This aggregative process goes in two steps. First, interactions between

nodes of individual networks are assigned a phylogenetic depth, based on the phylogenetic distribu-

tion of their components. For example, a set of interacting genes reported in the yeast PPI, with

detectable homologs exclusively present in all fungal lineages, and for which no lateral gene transfer

(LGT)/endosymbiotic gene transfer (EGT) is suspected, would be considered as encoding (a portion

of) a process potentially present in ancestral fungi.

Second, interactions between nodes independently inferred to be of the same phylogenetic depth in

separate analyses of interaction networks are aggregated to produce super-interaction networks for

that phylogenetic depth. This approach to super-interaction networks is trivial, when one considers

that networks are lists of edges that can be concatenated, which provides further support (i.e., the

number of independent interaction networks recovering a particular interaction) for each edge in

the super-interaction network.

Of note, in the case of prokaryotic molecular networks, LGT will impact the topology of interaction

networks and complicate inferences, either by introducing groups of interacting entities (promoters,

genes, proteins), therefore grafting subgraphs within host interaction networks, or by introducing sin-

gle genes. At small evolutionary scales, such LGT may thus be detectable through network compar-

isons. At a larger evolutionary scale, eventually for cross-domain network comparisons, components

and edges of interaction networks originated from LGT will not be immediately distinguishable from

components and edges evolving vertically within a host lineage, if the evolutionary labels used in
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phylosystemics are limited to homology between network components. In cases of undetected LGT

between Archaea and Bacteria, a naive network comparison for species from these two Domains

might lead to the belief that some biological processes are shared and interpreted as if these pro-

cesses were ancestral, even though the shared network topology would here reflect LGT between

these lineages. Precisely because LGT is expected to complicate phylosystemic analyses, in cases

involving prokaryotic networks a good practice is to use additional evolutionary labels, namely where

nodes correspond to transferred entities. Standard phylogenomic approaches should be used first to

identify LGT, to map the LGT labels onto interaction networks to distinguish nodes and edges that

may be affected by LGT. Indeed, interaction networks can be labelled with a diversity of labels reflect-

ing all a priori knowledge on evolutionary processes affecting their components rather than only ho-

mology/orthology information.

Homomorphism Approaches for Phylosystemic Comparative Analyses

The sequential inference of ancestral networks can be further completed and tested via a second

approach of graph comparison, namely homomorphism analyses, taking advantage of recent devel-

opment from the constraint satisfaction problem (CSP [38]), or a more general concept of bipartite

graph comparison, the notion of subtype, developed in CSP [39] (Box 2). Common local network pat-

terns identified in comparisons may describe interactions inherited from the last common ancestor of

the compared species. Such inferences based on conserved sets of nodes and edges across interac-

tion networks are likely to be robust to missing data, in the sense that they will point to real, even if

partial, processes, since the patterns are observed in multiple species. Moreover, the statistical sig-

nificance of the subgraphs can be tested by randomly shuffling labels in the compared networks, to

implement a P value, associated with a particular shared subgraph in the two networks. Let us now

explain what the payoff of these bioinformatically realistic approaches might be.

Phylosystemics Can Enhance Knowledge in Evolution

To support our call for phylosystemics, let us develop two theoretical examples of the unique poten-

tial of ambitious phylosystemics studies, conducted at a taxonomically broad level, and exploiting

both homology and orthology relationships. Simply put, we propose to embrace phylosystemics

and apply it, systematically, using the above kinds of interaction network as evidence per se to tackle

major evolutionary questions such as the evolution of: major groups, endosymbioses, turn-over of

protein content in organelles, and more generally of the evolution of protein interactions within

the cells, of community structures, of emergent metabolic functions and of ecosystems (see

Outstanding Questions). In this way information from systems biology would be systematically put

at the service of evolutionary studies addressing major evolutionary issues.

Improved Understanding of Major Evolutionary Transitions and Endosymbioses

Phylosystemic analysis of molecular interaction networks could provide new, alternative evidence to

address simple, yet pressing, issues: what molecular processes evolved along with new major groups

(e.g., from the first eukaryotic common ancestor, FECA, to the last eukaryotic common ancestor,

LECA [40])? What extant lineages are more ancestral-like in terms of their constitutive processes?

None of these questions can be readily answered by phylogenetic analyses alone, whereas phylosys-

temics can provide a partial inference of the cellular processes present in the LUCA or in the proge-

notes, in early eukaryotes, Archaea, Bacteria, and in major groups within these three Domains.

Consider eukaryogenesis. The phylogenetic dating of interaction networks offers a way to infer the

local architecture of early eukaryotic GCNs, GRNs and PPIs by focusing on nodes and edges found

in the last common ancestors of eukaryotes, including gene families that may have been contributed

by the ancestral endosymbiotic bacteria and their archaeal hosts. Phylogenomics alone is not infor-

mative about the temporal order in which the different early eukaryotic specific genes evolved during

eukaryogenesis: their relative timing of appearance is not decidable, since such genes may have ap-

peared as early as FECA and as late as LECA, or anytime in between [40–42]. Yet, phylosystemic anal-

ysis provides a new strategy to address this relative timing issue, which could propose a relative

dating of the time at which early lineage-specific genes evolved, under a certainly simple yet
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apparently reasonable assumption [4,43–45]. On average, older genes have had more time than

younger genes to form novel interactions with molecular partners, and therefore older genes might

be more highly connected than younger genes (with similar functions) in early eukaryotic GCNs,

GRNs, and PPIs. Under the testable logic that, for nodes with similar phylogenetic depth (and espe-

cially for genes with similar functions), higher degree nodes preceded nodes with less neighbors in

interaction networks in time, phylosystemics could be tried out to propose original hypotheses

that phylogeny alone could not support [40,41]: the relative ordering of appearance of processes

‘within’ a single (e.g., basal) branch of the tree, using the topology of the interaction network as a

time machine (Figure 2, Key Figure). Thus, centrality analyses (degrees, etc.) of eukaryotic genes

(exclusive to eukaryotes, inherited from archaea, or inherited from bacteria) in interaction networks

could be used to enlighten changes in molecular processes during the FECA to LECA transition.

Because there are fewer core gene families than there are ancient gene families, and because inter-

actions are retained in some lineages but can be lost in other lineages, separate phylosystemic ana-

lyses are likely to identify the largest set of early nodes and interactions. Typically, gene families

conserved in ’unikonts’ and ’bikonts’ (or ’opimoda’ and ’diphoda’) [46] could be traced back to the

branch from FECA to LECA even if these families are not still present in all eukaryotic taxa. Similar

approaches could be conducted on the poorly known transitions from the first to the last archaeal

common ancestors (the FACA to LACA transition [42,47]) and from the first to the last bacterial com-

mon ancestors (the FBCA to LBCA transition) [42] to propose a relative timing of evolution of the

exclusive archaeal/bacterial genes and processes, respectively, although for prokaryotes great

care must be taken to avoid false positives due to LGT.
Key Figure

Phylosystemic Study of the Origins of New Groups

LAST COMMON ANCESTOR

Species A Species B

    Mapping of gene families on interac on networks

     Iden fica on of early interac ons,
in the ancestors of A and B

Hypothesis on the evolu on of these
early interac ons

FIRST COMMON ANCESTOR

Species A Species B

Trends in Microbiology

(B)

(C)

(A)

Figure 2. Three typical steps of a phylosystemic analysis, oriented towards the inference of the evolution of early

processes at the base of a clade. (A) Left panel. Top part, interaction networks of two related species, with nodes

labelled with an identical color for homologous entities (e.g., genes), or left white or black otherwise. Black edges

correspond to connections exclusive to each species. Pink edges indicate shared interactions between

homologous families. (B) Bottom part, a phylogenetic logic would predict that the shared architecture,

identified using algorithms to find the maximal common labelled subgraph, dates from the base of the (A,B)

clade. (C) Right panel. Phylosystemics proposes to refine this inference based on hypotheses considering

topological information from the interaction networks. Here, for example, nodes with higher degrees (in actual

networks) are considered to be more ancient than nodes with lower degree, which allows us to decompose the

evolution of the processes between the first and last common ancestors of the clades.
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Once the ancestral interaction networks are inferred, using subtype analyses for pairs of networks

within each Domain of life, phylosystemics can determine what extant major group/taxa hosts the

highest proportion of ancient interactions inherited from the last common ancestor of its group. Inter-

action networks from extant taxa can be sorted by their proportions of preserved ancient interactions,

using the proportion of ‘early nodes + edges’ these contemporary networks embed. This original

phylosystemic measure thus quantifies the similarity of processes within a taxon with the processes

inferred to have been present in its common ancestor(s). For example, this measure can show what

extant groups retained the highest proportion of ancient interactions within each Domain of life.

Looking ancient does not mean being ancient, but phylosystemics can easily single out taxa with pro-

cesses that are largely conserved. It can thus offer a new kind of evidence on the nature (in terms of

processes) of first and last common ancestors, for example, by identifying themost LUCA/progenote-

like of the extant taxa, which could give new insights to the lasting debates on the nature of the last

common ancestors of cells ([48–52] and references therein), or by identifying the most FECA/LECA-

like extant archaeal group, providing alternative evidence in a currently hot issue [40,41]. For

example, searching for subtypes between inferred early eukaryotic interaction networks (GCN/

GRN or PPI) and the interaction networks from contemporary archaea would show what archaeal lin-

eages (e.g., the Asgard lineage) harbor the significantly highest proportion of inferred early eukary-

otic interactions.

Another exemplar application of phylosystemics relates to endosymbiosis studies. Typically, phylo-

genomicists agree that primary, secondary, and tertiary endosymbioses impact the gene content

of nuclear eukaryotic genomes as a result of EGT (from the genomes of the endosymbionts to the nu-

clear genomes of their hosts [53]). Yet, they fiercely debate on the amount of additional laterally trans-

ferred genes that may have made their way inside eukaryotic genomes [54–57]. Phylosystemics can

provide independent evidence on the reality and the biological consequences of proposed EGT/

LGT in protists since it can describe how candidate EGT/LGT genes and their products functionally

integrate in their host cells. For example, in case of negative correlation between transferability

and node degree, within a given functional category, ancient gene families may typically have higher

degrees [4,43–45] in the interaction networks of their eukaryotic host species than gene families

recently acquired by long distance LGT. Therefore, phylosystemics provides an additional test to

distinguish some bona fide LGT genes (expected to show significantly lower degrees) from ancient,

repeatedly lost, gene families (expected to show significantly higher degrees) in evolutionarily

labelled interaction networks from protists. Overall, phylosystemics appears as a relevant strategy

to provide more evidence for or against introgressive events in eukaryotes.

Thus, phylosystemics could provide novel ways to sort out events of molecular change within a given

branch of the species phylogeny, identify early-looking taxa, and, in protists, validate some LGT/EGT

(detected as significantly underconnected nodes with homology to bacterial genes/proteins).
Improved Understanding of Ecosystems Evolution, while Embracing Diversity

To paraphrase a famous biological saying, ‘Omnis reticulum e reticulum’ (all networks arise from

other networks). Indeed, all contemporary biological organizations and processes certainly suc-

ceeded to former organizations and processes (a constraint called ‘contingency of network evolution

on the pre-existing network structure’ by [30], or ‘string of historical events’ by [13]). Yet, so far, evolu-

tionary biologists have very fewmethods to formally model this fundamental intuition, and to account

for the contribution of a diversity of modes of interactions to explain the evolution of biodiversity.

Phylosystemic analyses at the ecosystem level could unravel ecological interactions with strong

evolutionary relevance.

Consider microbial interactions described by co-occurrence networks with OTUs as nodes, inferred

from time series, and eventually from ecological transects from a diversity of environments (soils,

hosts, waters). A CN can be evolutionarily labelled by adding the taxonomy of the sequences, repre-

sented by its nodes. CNs produced (i) from replicates at different times for a given environment (mi-

crodynamics studies), or (ii) for different environments (soil, lakes, etc.), can be compared to identify (i)
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nodes with similar roles and (ii) subtypes corresponding to subgraphs with similar architectures of mi-

crobial interaction between CNs. Such comparisons would detect stable patterns of interactions

within the extant biodiversity [58] (Figure 3).

Moreover, phylosystemic studies could enhance these descriptions by looking for potentially

ancient stable interactions, providing each CN is transformed by aggregating the nodes corre-

sponding to given taxa (e.g., a yeast and a Penicillium species) into metanodes corresponding to

broader taxonomic categories (e.g., fungi). Transforming a contemporary original CN into an evolu-

tionary pooled CN allows one to make an iterative use of CSP approaches to compare the induced

CN generated across various levels of the taxonomy (from species to phyla) to identify, for each level

of the taxonomy, (i) metanodes with similar roles and (ii) subgraphs of metanodes with similar archi-

tectures between evolutionary pooled CNs from different samples (Figure 3). This strategy would

typically detect recurring types of syntrophic associations, for example, between distinct methano-

genic archaeal lineages and distinct sulfoxidizing bacterial lineages in different environments. Phy-

losystemics could thus unravel microbial interactions which may be homologous across environ-

ments, ancient/persistent kinds of interactions, and determine what spatially separated

communities on the planet share the highest proportions of such homologous interactions, and in

that regard rely upon ‘related’ structures. Furthermore, phylosystemics could help to better under-

stand the dynamics of microbial interactions over increasingly large evolutionary timescales, by de-

tecting nodes and metanodes with significantly high role scores (Box 2) between CNs from different

environments. Such a comparison would show whether alternative microbial interactions arose by

the replacement of some taxa by others (e.g., if Oomycetes replaced fungi in some environmental

interactions).
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CN1̕

Figure 3. Iterative Aggregation of Nodes in Co-occurrence Networks for Constraint Satisfaction Problem

(CSP)-Based Comparison.

In this example, co-occurrence networks (CN)1 and CN2 are built from omics data gathered at two different sites.

Nodes are operational taxonomic units (OTUs) and edges represent significant co-occurrence of these OTUs at

each site. These networks can be compared using CSP and role scores. In the initial comparison of CN1 and

CN2, the common subgraph is ‘a-b’, indicating that these two related labels (e.g., two fungal species) interact at

both sites, but no nodes share the same role. Aggregating the nodes based on taxonomy generates the

induced networks CN1ʹ and CN2ʹ. The induced networks can also be compared using CSP and role scores. At

this taxonomic depth, node ‘3’, the internal node on the branch to labels e and f, has the same role in CN1ʹ and

CN2ʹ and ‘1-3-2’ represents a common subgraph between CN1ʹ and CN2ʹ, indicative of a conserved interaction

at a deeper phylogenetic level.
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More fundamentally, phylosystemics could shed light upon the evolution of metabolic networks and

biogeochemical cycles by representing the abundance of reads/enzymes/host species associated

with particular KEGG pathways in a given host or environment. For example, when different taxa alter-

natively encode different steps of the reactions, as in the case for essential amino acid pathways in the

symbioses between Tremblaya PCIT and Moranella endobia within mealybugs [59], or nitrogen fixa-

tion in microbial communities by metabolic hand-off [60], phylosystemics can detect candidate pat-

terns of metabolic complementarity between microbial lineages by decomposing taxonomically

labelled metabolic pathways into monochromatic connected components (Figure 4). If a given

pathway is encoded by the same taxa, this operation of decomposition produces one connected

component per pathway, otherwise that decomposition produces multiple connected components.

This latter type of pattern is of major, fundamental interest since it suggests instances where the col-

lective function performed by the metabolic pathway or by the geochemical cycles may be under se-

lection, in agreement with the ITSNTS hypothesis [61]. The proposed approach aims at analyzing the

topology of the network, not its quantitative behavior. Thus, CSP analyses of labelled metabolic net-

works could show, for each environment for which samples from different time points or spatial loca-

tions are available, whether and which (parts of) pathways persist (since enzymes are present),

whereas taxa encoding their genes change [61]. These network comparisons would typically detect

switches, that is, subgraphs corresponding to nodes and edges for which the (relative) abundance

of taxa encoding the genes significantly change in the community over time (or over space for ecolog-

ical transects). Additionally, phylosystemic analyses of the centralities (degree, eccentricity, between-

ness, and presence on a cycle) in such labelled metabolic networks can show whether nodes with

particular centralities are associated with one or multiple host taxa (e.g., whether reactions corre-

sponding to high betweenness nodes in the metabolic networks are highly constrained or potentially

interchangeable in terms of taxa).
Concluding Remarks

Merging results and methods from systems biology and from ecology with those of phylogenomics ap-

pears timely and promising. We propose to call the interdisciplinary outcome of such a merging ’phylo-

systemics’. Naming this fieldwill hopefully be important for its development, as it can enhance the visibility

of this research program into which a diversity of scientists can invest, ease scientific collaborations, and

encourage the development of novel tools/approaches for a nascent community. Thus, in the late 1990s to

early 2000s, the introduction of the term ‘phylogenomics’ supported the development of cutting-edge

approaches to handle the wealth of molecular data, and probably contributed to a successful transition

from phylogenetics, whose practices were traditionally centered on studies of single or a few gene fam-

ilies, towards broader, multimarker analyses. Phylosystemics aims at filling a function comparable with the
Figure 4. Patterns in Taxonomically Labelled Metabolic Networks.

(A) A theoretical example. In this network, nodes represent enzymes in a KEGG pathway i, labelled based on the

most abundant taxa encoding these enzymes (e.g., a blue lineage, a green lineage, and a pink lineage).

Evidence for metabolic complementarity between different lineages could be found when a single pathway

includes steps requiring enzymes that are predominantly found in different taxa. A switch in label of nodes in

this pathway at different sample sites or at different timepoints (e.g., from green at tn to pink at tn+1) could

indicate a switch in the taxa predominantly performing this metabolic function, in agreement with the ITSNTS

hypothesis, which proposes that genes, rather than host taxa, matter for the completion of a given pathway. (B)

Taxa switching in the mealybug pathway for tryptophan and phenylalanine biosynthesis adapted from [59], with

nodes representing enzymes in that metabolic pathway colored by their taxonomic origin. Upper. In

Planococcus avenue, tryptophan and phenylalanine biosynthesis are predominantly encoded by the Moranella

endobia endosymbiont. Lower. In Phenacoccus citri parts of the same pathway are replaced by a second

endosymbiont, Tremblaya PCIT. (C) Environmental taxa switching in the denitrification pathway, adapted from

[60,62], with nodes representing enzymes, and colors representing the predominant taxa inferred as encoding

that enzyme in a given environment. Upper. Taxonomic distribution of enzymes in the denitrification pathway

identified in aquifer metagenome samples in [62], where no single genome encoded a complete denitrification

pathway, suggesting ’metabolic hand-off’ between community members, adapted from [60]. Lower.

Hypothetical second environment in which the denitrification pathway is also present, but different taxa encode

the enzymes responsible for particular steps of the pathway (noted with *).
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Outstanding Questions

Can we learn more about the ori-

gins of new groups, including the

transitions from the first common

ancestor and last common ancestor

of these groups (e.g.,. the transi-

tions from the first eukaryotic com-

mon ancestor to the last eukaryotic

common ancestor, or those for

other domains of life)?

What extant archaeal lineages are

more similar, in terms of their pro-

cesses, to the ancestral host cell

that acquired a mitochondrial
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one that phylogenomics did in the past, because the prevalence of interaction networks shows that there

is a common ontology throughout the biological world, and a common problem: understanding the or-

igins and evolution of biological processes. As phylosystemics prolongs the transition from phylogenetics

to phylogenomics, we hope that introducing this term will further encourage and generalize the develop-

ment of analyses of biological processes through the combination of practices of comparative genomics

andphylogenomicswith that of systemsbiology and of ecology. However, the term ‘evosystemics’may be

preferred as an alternative since it would be a more inclusive name for the field studying the evolution of

biological processes using networks.
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