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Abstract

DNA sequencing technology is becoming more accessible to a variety of researchers as costs continue to decline.
As researchers begin to sequence novel transcriptomes, most of these data sets lack a reference genome and will have
to rely on de novo assemblers. Making comparisons across assemblies can be difficult: each program has its strengths and
weaknesses, and no tool exists to comparatively evaluate these data sets. We developed software in R, called Sequence
Comparative Analysis using Networks (SCAN), to perform statistical comparisons between distinct assemblies. SCAN uses
a reference data set to identify the most accurate de novo assembly and the “good” transcripts in the user’s data.
We tested SCAN on three publicly available transcriptomes, each assembled using three assembly programs. Moreover,
we sequenced the transcriptome of the oomycete Achlya hypogyna and compared de novo assemblies from Velvet,
ABySS, and the CLC Genomics Workbench assembly algorithms. One thousand one hundred twenty-eight of the CLC
transcripts were statistically similar to the reference, compared with 49 of the Velvet transcripts and 937 of the ABySS
transcripts. SCAN’s strength is providing statistical support for transcript assemblies in a biological context. However,
SCAN is designed to compare distinct node sets in networks, therefore it can also easily be extended to perform statistical
comparisons on any network graph regardless of what the nodes represent.
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Introduction
Advances in sequencing technologies have made genome-
scale studies accessible to individual laboratories. Although
most model systems rely on reference genomes for transcript
assembly, nonmodel systems, or organisms without available
reference genomes, must utilize de novo transcriptome
assemblers (Zhao et al. 2011). The challenges of de novo
transcriptome assembly are well documented (Normark
et al. 1983; Cocquet et al. 2006; Martin et al. 2010; Grabherr
et al. 2011; Martin and Wang 2011) and include varying tran-
script abundance, alternative splicing, and strand-specific
expression of transcripts, which challenge the accuracy of
assembly algorithms.

As transcriptome sequencing has become more common,
algorithms used to assemble these data have become more
numerous. Programs such as Velvet, ABySS, Oases, Trinity,
and the CLC Genomics Workbench (CLC Bio Aarhus,
Denmark) have been developed to specifically handle the
difficulties associated with transcriptome data sets and have
quickly become the “go to” programs for de novo transcript
assembly (Zerbino and Birney 2008; Simpson et al. 2009;

Grabherr et al. 2011; Schulz et al. 2012). Each has strengths,
depending on the data and the needs of the user (Martin and
Wang 2011).

The basic parameters that accompany the output of many
assembly algorithms (e.g., transcript length distribution,
median size [n50], and base quality) reflect the sequence
composition and provide almost no indication as to whether
the assembled transcripts represent plausible mRNA se-
quences that are sufficiently similar to an organism’s genes.
For this reason, time-consuming manual assessment via
nucleotide or protein homology is required to determine
the effectiveness of the assembly (Everett et al. 2011;
Feldmeyer et al. 2011; Zheng et al. 2011). Additionally, if the
study organism is distantly related to species for which com-
parative data are available, this approach may not provide
conclusive results as to how well a transcriptome assembly
recapitulates real mRNA. There does not currently exist a way
to statistically compare the extent of transcript sequences
highly similar to known biological sequences in different
assemblies that result from iterations of a single algorithm
or those derived from multiple assembly algorithms for the
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same data. With these limitations, we set out to assess
transcriptome assembly in a statistically comparable way.
We present the Sequence Comparative Analysis using
Networks (SCAN) software, which utilizes distinct features
of sequence similarity networks to make statistical compari-
sons among assemblies using one or several reference
organisms.

Gene Similarity Networks

Gene similarity networks are graphs (fig. 1) illustrating
sequence similarities in user-generated data sets (Holland
et al. 2004; Huson and Bryant 2006; Bittner et al. 2010;
Beauregard-Racine et al. 2011; Bhattacharya et al. 2013).
Two nodes (sequences) are connected by an edge when
there exists a relationship of similarity between the sequences
(fig. 1A), as assessed by a Basic Local Alignment Search Tool
(BLAST) search (Altschul et al. 1997). Importantly, two types
of edges can be distinguished, depending on whether the
similarity between two sequences occurs along more than
90% of each sequence (full homology) or over smaller por-
tions (partial homology) (Alvarez-Ponce et al. 2013). On such
a graph, nodes connected by edges fall into separate “con-
nected components” (fig. 1B). Because they are mathemati-
cally based, measurable properties of connected components
and indices of nodes in gene similarity networks (e.g., propor-
tion of articulation points, proportion of nodes of degree one,
and Jaccard Index [JI]; fig. 1C–E) can be used to compare
the topological behaviors of transcripts and reference se-
quences in the network. Therefore, these networks can be
used to compare a set of assembled transcripts to a data set of
reference proteins.

SCAN identifies assembled transcripts that have no signif-
icant differences in statistical distribution of index values with
respect to the reference data, according to five indices in the
network: 1) proportion of reference and transcript data, 2)
proportion of local and 3) global articulation points com-
posed of reference and transcript nodes, 4) longest mono-
chromatic chain, and 5) proportion of transcript/reference
nodes with a degree of 1. More precisely, a global articulation
point is a sequence whose removal in a connected compo-
nent results in the disconnection of that component into
smaller components. A monochromatic chain is a shortest
path between two nodes that only comprises nodes with the
same label (i.e., transcript or reference). SCAN calculates these
statistics for each assembly condition. In addition, a sixth
measure, the Jaccard Index (JI), applies to a pair of nodes,
and measures the proportion of shared neighbors between
these two nodes. In its present form, our gene similarity
networks approach provides a quick method to compare
large data sets using measureable and statistically informative
connected component features. We tested SCAN on three
public transcriptome data sets from the model organisms
Escherichia coli, Saccharomyces cerevisiae, and Plasmodium
falciparum, each assembled by three assembly programs
(Blattner et al. 1997; Gardner et al. 2002; Otero et al. 2010).
Moreover, we also investigated the discriminatory power of
SCAN (i.e., its ability to detect sequences that behave like
reference sequences in similarity networks) using four triplets

of taxa. These triplets comprised two closely phylogenetically
related fungal species and a more distant one, with compa-
rable numbers of connected components in the network
(supplementary materials, Supplementary Material online).
Finally, we used SCAN to assess de novo transcriptome
assemblies of the nonmodel oomycete Achlya hypogyna
produced by ABySS, Velvet, and CLC Genomics Workbench
(CLC) assembly algorithms. We used predicted proteins
from the fully sequenced and annotated Pythium ultimum
genome as the reference data set (Levesque et al. 2010)
for SCAN, to assess the significant similarity of transcripts
reconstructed from A. hypogyna mRNA data to known bio-
logical sequences.

It is not our goal to evaluate assembly algorithms. Instead,
we provide analytical software for users to quickly identify
the assemblies from their data that are more similar to known
biological sequences. Such assemblies cluster with their
homologs in a connected component. However, when assem-
bly methods produce bad transcripts due to artifacts such
as the production of chimeras or incomplete assembly,
distinct patterns between reference genes and transcripts
can appear (fig. 1D, F, G, and H) in sequence similarity net-
works. We show that all the assemblers produced both poor
and well-assembled transcripts and that SCAN can efficiently
compare multiple assemblies.

Results
Two versions of SCAN were developed: “SCAN” and “SCAN
stringent” that can run either in single or multiprocessor
nodes and are available from http://evol-net.fr (last accessed
May 23, 2013). As documented later, the stringent version is
preferred for biological applications, such as assembly assess-
ment and phylogenomics.

Testing SCAN

SCAN uses the Kolmogorov–Smirnov (KS) test (P-value
threshold of 0.05) to compare the distributions of index
values for transcripts and reference nodes (except for the
JI, see Materials and Methods). The null hypothesis is that
test and reference transcripts are from the same popula-
tion of biological sequences and should have comparable
topological properties in sequence similarity network.
Rejecting the null hypothesis indicates that assembly
methods have potentially failed because properties of
those test and reference transcripts have different distri-
butions and are unlikely to be biologically similar. We have
recently published a first test of this concept and most of
these indices (Bhattacharya et al. 2013), but here we also
verified that SCAN behaved according to our expectation
on a fungal data set (see supplemental materials,
Supplementary Material online).

To test SCAN’s efficiency in terms of detection of
“good” transcripts, we used three de novo assemblers
(ABySS, CLC, and Oases) to assemble the transcriptome
reads from three fully sequenced genomes (one bacteria,
E. coli, and two eukaryotes: Sac. cerevisiae and Pla. falcip-
arum). Good contigs were arbitrarily identified within each
of these assemblies for each organism as the transcripts
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that match with more than 97% ID with their correspond-
ing gene in the genome (supplementary table SI-2,
Supplementary Material online). The number of transcripts
that met this criterion varied between 14.90% and 43.90%.
Thus, for each of these data sets, the number of good
contigs was relatively low. This may be explained by a low
coverage of the genome, by a poor choice of assembler
criteria, or by a limited performance of these assemblers
on these particular transcriptomes.

Nonetheless, we expected that SCAN should be able to
distinguish good from bad transcripts within such assembled
data sets, thereby proposing a “cleaned" subset of transcripts
closely resembling their genes of origin. This cleaning step
requires that SCAN solves a double challenge: rejecting as
many of the poor transcripts as possible without losing too
many of the good ones. To test how SCAN performed on
these test data sets, we used two types of sequence similarity
networks, including either 1) partial homology edges plus full

FIG. 1. Basic topologies found in sequence similarity networks. (A) Nodes represent sequences. Two nodes are connected by an edge when they show a
similarity greater than a user-defined threshold. (B) Network graphs are made up of separate subnetworks, called connected components. (C) Any node
that disconnects a connected component when removed is called a global articulation point (red). (D) The degree of a node is the number of its direct
neighbor(s). Incomplete assembly may result in high proportion of transcripts with a degree of 1 (blue) compared with reference (red). (E) The JI is used
to compare the neighborhood of two nodes. The red and purple nodes have a total of five neighbors (black/gray nodes) but only share the black nodes,
so the JI for this pair is 3/5. If two nodes have strictly identical neighbors, the JI equals 1; if they do not share any neighbors, the JI equals 0. (F) When
assembly methods produce chimeras (blue node) of unrelated proteins that connect the unrelated reference proteins (red, purple, black, and gray
nodes), it produces a star-like pattern. (G) When assembly methods produce partial assemblies (blue nodes) that do not overlap with one another and
are too short to connect to most of the full reference sequence (red node), a star-like pattern is also produced. (H) When assembly methods produce
partial assemblies (blue nodes) that overlap with one another, it produces a chain-like pattern.
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homology edges or 2) full homology edges only (see Materials
and Methods). The first type of network is very inclusive and
can encompass even short assemblies (e.g., assemblies whose
sequence of origin could not be entirely recovered). The
second type of network is more stringent and should already
eliminate short assemblies from the set of contigs in which
good assemblies can be detected. Moreover, we tested two
versions of SCAN: the default version and “SCAN stringent"
on these networks. By default, SCAN operates with the set
of indices described above to identify contigs with indistin-
guishable topological properties for most, or all these indices,
with respect to their closest reference sequence in the net-
work. SCAN stringent requires that the sequence of the
contig is directly connected to (at least one of) its homolog(s)
from the reference data set in the network.

This protocol allowed us to compare several conditions
(table 1 and supplementary table SI-3, Supplementary
Material online) to determine whether, and when, SCAN
was most successful identifying genuinely good contigs,
with the lowest rate of false-positive detection, and/or the
lowest rate of miss. We observed that, irrespective of the
transcriptome, a higher absolute number of good transcripts
are recovered in networks with both partial and full homology
edges. This is likely because the full homology condition elim-
inated many short, yet good, transcripts. Although using a
network with both partial and full homology edges enhances
the risk of false-positive detection, SCAN stringent massively
reduces this risk (supplementary table SI-3, Supplementary
Material online). For instance, the false-positive rate was
2.45% for ABySS, 3.84% for CLC, and 3.19% for Oases, in
Pla. falciparum assemblies. False-positive rates were even
lower in E. coli and Sac. cerevisiae (supplementary table SI-3,
Supplementary Material online). Therefore, SCAN stringent is
generally preferred to the default version for assembly
evaluation and phylogenomic applications. However, one
can also generally clean the assemblies using the default
version of SCAN by raising the number of tests of indices
that a sequence must pass to be considered as a good
transcript. Although raising the number of tests of indices a
transcript is required to pass (i.e., for which no statistical
difference from a reference sequence is detected) tends to
reduce the rate of false-positive detection, it also increases the
rate of misses for both the stringent and the default version of
SCAN (supplementary table SI-3, Supplementary Material
online). Overall, it is clear that the stringent version of
SCAN is not more conservative and performs better than
the default version of SCAN to detect transcripts that are
highly similar to reference sequences, irrespective of the
type of networks (stringent or inclusive) on which it is used.

Application to Nonmodel Transcriptomes

SCAN stringent was used to assess transcriptome assemblies
from the oomycete, A. hypogyna. The selected transcripts
from each assembly returned significant values for five indices
at different BLAST minimal % identity (ID) thresholds
(ABySS = 50%, Velvet = 90%, CLC = 50%). SCAN indicated
the CLC assembly resulted in the most transcripts (1,128)

with statistically supported similarity to reference data,
compared with the results of Velvet (49) and ABySS (937).
Although the number of transcripts similar to the reference
is low compared with the total number of transcripts in
each assembly (CLC = 10.90%, Velvet = 0.12%, ABySS =
3.90%), the comparison to the number of analyzed transcripts
(i.e., transcripts that made it into the network) is a more
accurate reflection of SCAN’s performance (CLC = 50.74%,
Velvet = 36.01%, ABySS = 42.57%; table 2).

Reference and Network Selection

SCAN’s calculations are based on distributions of transcript
and reference nodes in a gene similarity network. As we have
seen earlier, sequence similarity networks with different levels
of stringency can be used, and SCAN will return larger abso-
lute numbers of good contigs for more inclusive networks.
Thus, unless one is exclusively interested in full sized good
transcripts, the use of sequence similarity networks featuring
both partial and full homology edges, coupled to the use of
“SCAN stringent,” will result in users identifying the highest
number of good transcripts with limited false positives.
Similarly, different references can be used to assess transcripts
similarity to known sequences. The choice of a proper refer-
ence is not always trivial, therefore SCAN allows for the
sequential use of multiple references. For each of these refer-
ences, SCAN identifies transcripts that are highly similar to
the reference genes. Therefore, different references can be
jointly used to identify distinct sets of good transcripts (and
collectively offer an even more complete detection of such
transcripts). This “multi-reference" option is especially useful
when a gene family has undergone an unusual evolutionary
rate (or high rates of gene duplication or loss) in one reference
but not in another. Furthermore, the use of multiple refer-
ences may even allow one to choose with limited a priori
information what reference is the best one overall for a tran-
scriptome data set (e.g., the one with the highest number of
genes similar to the transcripts).

To study the oomycetes transcripts, we compared them
to five potential reference species before selecting Pyt. ulti-
mum (see Materials and Methods). Regardless of the refer-
ence used, the CLC transcriptome assembly was the only
assembly that consistently returned large numbers of quality
transcripts (supplementary table SI-4, Supplementary
Material online).

Proportion of Transcripts and References in
Connected Components

SCAN calculations show that the CLC assembly had the
most transcripts that resembled proteome data (good tran-
scripts) (table 3; 2,132 transcripts, from the 1,716 connected
components that pass the proportion test, P value> 0.05)
for that index. This number was larger than ABySS (2,041)
and Velvet (91) networks at the selected BLAST ID thresholds
(table 3). Analyses of the ABySS and Velvet networks rejected
the null hypothesis for the proportion index (table 3),
indicating significant difference between test and reference
data.
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Proportion of Transcripts and References Articulation
Points in Connected Components

Articulation points are nodes whose removal disconnects
a component, either locally (direct neighbors of the
articulation point get disconnected) or globally (the re-
moval of such nodes splits the initial component into sev-
eral connected components). Chimeras could generate an
excess of articulation points, for example, when two se-
quences that correspond to portions of different mRNAs
have been mistakenly assembled into one single transcript
(fig. 1F). Global articulation point produced 1,563 good
transcripts for ABySS and 1,725 good transcripts for CLC
and 92 for Velvet (table 3). SCAN indicated that CLC had
the highest number of good transcripts for the local artic-
ulation point test (2,176) of all the networks examined
(table 3).

Longest Monochromatic Chain

When assembly methods connect unrelated mRNA se-
quences, or fail to connect sequences from the same
mRNA into a single transcript, an excess of chains of nodes
corresponding to incorrect assemblies can form (fig. 2C).
Length of these chains was estimated and compared with
that of chains of sequences from the reference data in each
connected component. In the SCAN selected networks,
we were unable to identify any transcript assemblies that
represented monochromatic chains as all the analyzed
transcripts passed this index (table 3). The CLC assembly
had the highest number of quality transcripts for that index
with 2,223 transcripts.

Proportion Transcript and Reference of Degree One

Nodes with a degree of 1 likely correspond to poor assemblies,
because failure to assemble short reads from the same
gene or closely related paralogs will result in star-like
connected components, with the incompletely assembled
transcripts loosely connected (i.e., by a single edge) to the
rest of the graph (fig. 1G). There were 50 transcripts with
a degree of 1 in the ABySS assembly selected by SCAN
(table 3). Velvet and CLC did not have any degree one tran-
scripts in the selected assemblies as all transcripts passed
this index (table 3).

Jaccard Index

If transcripts are successfully assembled, and if genes in the
transcript data set have evolved in a similar fashion as the
reference data (e.g., if the novel data did not undergo
unusual amount of gene family expansion, elevated rates
of evolution, or displayed other unusual genome features),
we expect that transcripts would produce similar se-
quences to the reference. In this case, successfully assem-
bled transcripts would be connected to the reference and
have the same neighboring sequences in connected com-
ponents (fig. 1E) of sequence similarity networks. The JI
quantifies to what extent two nodes share the same
neighbors by computing the ratio of common neighbors
over the total number of neighbors. SCAN measured the JI
for each transcript/reference pair in each input network.

Table 2. Assembly Results and Networks Features Analyzed by SCAN Stringent.

Assembler ABySS Velvet CLC

Number of transcripts 23,996 41,420 10,349

n50 (bp) 531 673 900

k-mer’s 55–64 29, 39, 49, 59, 69 NA

Number of transcripts/CC at 50% 2,201/1,566a 3,090/1,977 2,223/1,726a

Number of transcripts/CC at 60% 1,540/1,167 2,034/1,407 1,527/1,265

Number of transcripts/CC at 70% 844/674 1,101/782 812/692

Number of transcripts/CC at 80% 370/296 508/352 352/300

Number of transcripts/CC at 90% 112/86 136/92a 80/69

Number of transcripts/CC at 95% 39/31 38/26 30/24

Number of SCAN selected transcripts 937 49 1,128

NOTE.—CC, connected components.
aSelected as best assembly by SCAN.

Table 3. Number of Connected Components and Transcripts That
Pass the Test for Various Assemblers and Indices.

Assembly
Method

Centrality Network
Similarity

Number
of CC

Quality
Transcripts

AbySS Proportion 50 1,552 2,041

AbySS Articulation local 50 1,563 2,113

AbySS Articulation global 50 1,565 2,151

AbySS Degree one 50 1,565 2,151

AbySS Monoch. chain 50 1,566 2,201

AbySS Jaccard 50 798 983

Velvet Proportion 90 92 136

Velvet Articulation local 90 92 136

Velvet Articulation global 90 92 136

Velvet Degree one 90 92 136

Velvet Monoch. chain 90 92 136

Velvet Jaccard 90 36 52

CLC Proportion 50 1,716 2,132

CLC Articulation local 50 1,724 2,176

CLC Articulation global 50 1,725 2,194

CLC Degree one 50 1,726 2,223

CLC Monoch. chain 50 1,726 2,223

CLC Jaccard 50 974 1,167
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The CLC assembly had the highest number of quality
transcripts (1,167) sharing a similar neighborhood with
the reference when compared with the assemblies from
ABySS and Velvet (table 3).

Discussion
Correctly assembled transcriptomes yield a large number
of transcripts that have comparable distributions of index
values to sequences of related taxa in gene similarity networks
and cluster with their homologs in a connected component.
However, when assembly methods fail to recapitulate the
actual transcriptome due to artifacts, such as the production
of chimeras or to incomplete assembly, distinct patterns
between reference genes and transcripts can appear
(fig. 1D, F, G, and H).

In cases of incomplete assembly, we expect two extreme
kinds of different behaviors from transcript sequences, with
respect to reference proteins. Partial assemblies can loosely
connect components, either producing chains of incorrect
partial assemblies (fig. 1H) or a “cloud" of partial assemblies
around the connected component. This occurs when
sequences of partial assemblies do not overlap with one
another and are too short to connect to most of the se-
quences in the component (fig. 1G). The result is connected
components showing a high proportion of nodes whose

removal increases the number of connected components,
either at a local or global scale.

The second behavior results in sequences showing partial
similarity with a reference node to which they are homolo-
gous. The resulting topology is a star-like pattern (fig. 1D)
in which several partial transcripts (disconnected from one
another) are directly connected to the same reference
sequence. This situation would result in a connected compo-
nent showing loosely connected nodes with an excess of
nodes from the assembly having a degree of 1.

Indices Used in the Analysis

Using SCAN we were able to evaluate each connected com-
ponent and node in the networks using six network indices.
Our goal was to identify the largest pool of quality transcripts
within the assemblies and networks examined. SCAN produ-
ces results on both of these levels. The initial output identifies
which assembly has the highest number of quality transcripts
and lists those transcripts. On a larger scale, SCAN can be
used at the network level to identify networks that are sig-
nificantly similar to the reference across all the connected
components in that network. Individually, these indices
have specific strengths in their ability to identify similarity,
but it is the collective analysis of all six indices that gives SCAN
its analytical power. “SCAN stringent” gets additional power

FIG. 2. SCAN flow chart diagramming the inputs, index tests, and how the appropriate test networks are identified. SCAN uses multiple network files as
inputs where the user defines the two node types to be compared across, and within, the input networks. To identify similar network topologies, SCAN
uses five indices to statistically quantify those topologies and the JI. (A) The proportion of test nodes (blue) and reference nodes (red) in each connected
component is used as the first measure of similarity. Connected components with equal numbers of test and reference nodes (left) are indicative of
similarity, whereas highly disproportionate ratios (right) indicate low similarity. (B) If test and reference nodes are similar, they will occur as articulation
points (stars) in a near equal fashion (left). If they are different, this will not be the case (right). Articulation points can indicate improper assembly or
chimerical sequence in gene networks. (C) Failed assemblies can produce chain-like patterns for test sequences as shown in right. Successful assemblies
should produce no such chains, and if they do, test and reference chains should be of similar length (left). (D) Test nodes with a degree of 1 should occur
at a similar rate as the reference (left). In case of problematic assembly, a higher proportion of test nodes with a degree of 1 can appear (right). (E) Using
the JI, SCAN can identify when test and reference node pairs have similar neighbors (left) or not (right). Nodes from similar populations should share a
common neighborhood.
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from the direct connection between transcript and reference
sequences in the network.

In each network of interest, SCAN first determines for
each index, whether transcripts and reference have different
topological properties in each connected component. This
is calculated using a proportion test for the proportion of
reference and transcript data, the proportion of local and
global articulation points composed of reference and tran-
script nodes, the proportion of transcript/reference nodes
with a degree of 1, and a KS test for the distribution of longest
monochromatic chains of transcripts and reference sequences
in all components. Connected components for which no dif-
ference is detected are assumed to contain good transcripts.
Thus, SCAN can quantify the total number of good transcripts
in a network and identify the best network as the one with
the highest number of good contigs. However, in the rare
event of a tie, SCAN uses the values calculated for each
index in a different way. KS tests are used to compare the
distributions of values for each index between reference
and transcript nodes. SCAN considered the best network to
be the one for which a greater number of KS tests are nonsig-
nificant (e.g., showing no differences in the general distribu-
tions of reference and transcript sequences for more indices).

Quality Transcript Identification

For every transcript assembly examined, SCAN produces a list
of good transcripts (table 2). The transcripts selected for this
final list are those found at the intersection of connected
components that could not reject the null hypothesis
under the proportion test for an index and transcripts that
passed five indices. This list of transcripts is highly conserva-
tive yet accurate, as multiple biological factors (e.g., gene
family function, gene family expansion/contraction, lineage-
specific changes, and genome duplication) will affect the
topological properties of nodes in the network.

The ability to quickly indicate, with statistical support,
transcripts that are biologically similar to the proteome of a
related organism and useful for phylogenetic analyses in a
comparative genomics framework is a valuable feature of
SCAN. It is because of the family-level phylogenetic differ-
ences between A. hypogyna and Pyt. ultimum that SCAN
only identifies 1,128 transcripts as statistically similar between
the two organisms (P value� 0.05 for> 5 tested indices),
rather than an inability of CLC to assemble transcripts or
SCAN to evaluate similarities between sequences. Because
of the conservative nature of SCAN, the transcripts that
pass all five tests should represent a reliable pool for phylo-
genomic applications.

An additional use for SCAN is parameter optimization
using a single assembly program. Choosing parameters
during an assembly is often as, or more important, than
choosing an assembler program. When used to evaluate mul-
tiple networks produced under different assembly conditions,
SCAN has the ability to evaluate program parameters and
choose those producing contigs that best represent the
reference data (data not shown).

We have provided novel software, SCAN, which can com-
pare de novo assembled transcripts and reference sequences

in similarity gene networks. SCAN’s strength is providing
statistical support for transcript assemblies in a biological
context. This procedure requires limited computational infra-
structure while providing robust analyses of thousands of
genes in a short amount of time. SCAN’s utility, however,
could easily go far beyond evaluating transcriptome assem-
blies. As SCAN is designed to compare the topological prop-
erties of two node sets in networks, it can make statistical
comparisons on any network graph regardless of what the
nodes represent. To this end, future developments of the
software will include a richer diversity of indices to broaden
the comparative power of network-based analyses of large
data sets of sequences.

Materials and Methods

Construction of Test Transcriptome Data Sets

Sequence data files for the evaluation tests of SCAN were
downloaded from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive for each organ-
ism used. Read sets for E. coli were ERR019652 and ERR019653,
for Sac. cerevisiae SRR354092, SRR354093, and SRR354093,
and for Pla. falciparum ERR185973 and ERR185974. All
reads were trimmed on the CLC Genomics Workbench
(v5.02) using default settings and duplicate reads were re-
moved. The trimmed reads were used for all subsequent as-
semblies (table 4).

CLC assembly was completed with default settings for all
data sets; parameters included a minimum contig length of
100 bp, 0.5 length fraction, and 0.8 similarity fraction with
automatic word and bubble size. ABySS assemblies were
run with default settings for each species with a coverage of
five and erode of four, k-mer values for E. coli and Sac. cere-
visiae were 19–31 and 21–31 for Pla. falciparum with a step
interval of two. Transcripts from each species for each k-mer
were combined into a single pool. Redundant transcripts and
transcripts less than 100 bp were removed. Oases assemblies
were completed using the python script included in
the Oases package with a minimum transcript length
of 100 bp and a coverage cutoff of 5. K-mer values for E. coli
ranged between 19 and 31, 25–33 for Sac. cerevisiae, and
15–29 for Pla. falciparum.

RNA Extraction and Transcript Assembly

Cultures of A. hypogyna (ATCC 48635) were acclimatized
at 25 �C for 2 weeks at 12:12 L:D before 16 Luria Broth

Table 4. Assembly Results for Each of the Test Species Used to
Evaluate SCAN.

Assembler Parameter Escherichia
coli

Saccharomyces
cerevisiae

Plasmodium
falciparum

CLC n50 (bp) 248 196 195
Number of transcripts 5,603 3,305 22,234
Word size 21 20 23
Bubble size 50 50 50

ABySS n50 (bp) 349 208 276
Number of transcripts 5,614 2,660 16,574

Oases n50 (bp) 508 247 211
Number of transcripts 4,495 1,678 21,248
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50% concentration and 16 diH2O 150 ml subcultures were
created, each with three autoclaved hemp seeds. Cultures
were then incubated at 4 �C, 15 �C, 25 �C, and 35 �C and
harvested at 0.5, 1, 3, and 6 h in both light and dark condi-
tions. Fresh material was ground under liquid nitrogen im-
mediately after harvest, and ground material was placed
directly in extraction buffer. RNA was extracted from A. hypo-
gyna using the Qiagen RNeasy kit (Qiagen, CA) according to
the manufacturer’s protocol. RNA from all experiments was
pooled, and quality was assessed using a Nanodrop 8000
(Thermo Scientific, CA).

Library construction and sequencing via the Illumina GAII
were performed by Genome Quebec using one lane of single
108 bp reads. The data were trimmed on CLC to remove reads
shorter than 70 bp and those reads whose cumulative bases
with quality scores below 0.05. Default parameters for tran-
scriptome assembly were used for CLC. The similarity thresh-
old was set to 0.9, the insertion cost was set to 3, and the
automatically generated k-mer was 26. ABySS (Simpson et al.
2009) was run with default settings using a set of k-mer values
from 55 to 64 and then the assembled transcript sets were
merged into a single pool, and redundant transcripts were
removed. Velvet (Zerbino and Birney 2008; Zerbino et al.
2009; Zerbino 2010) transcript assemblies were done with
default settings using a set of k-mer values including 29, 39,
49, 59, and 69, then transcript sets were merged as above.

Protein Translation

To identify the proper frame for each assembled transcript,
DNA sequences from each assembly pool were compared
with a local database containing the protein transcripts
from Drosophila melanogaster (Adams et al. 2000),
Ectocarpus siliculosus (Cock et al. 2010), Fragilariopsis cylindrus
(Joint Genome Institute, USA), Leishmania major (Ivens et al.
2005), Monosiga brevicollis (King et al. 2008), Mycosphaerella
fijiensis (Joint Genome Institute, USA), Ostreococcus tauri
(Palenik et al. 2007), Phaeodactylum tricornutum (Bowler
et al. 2008), Phytophthora infestans (Haas et al. 2009),
Phy. ramorum (Tyler et al. 2006), Phy. sojae (Tyler et al.
2006), Pla. falciparum (Gardner et al. 2002), Pyt. ultimum
(Levesque et al. 2010) Saprolegnia parasitica (Broad
Institute, USA), and Volvox carteri (Prochnik et al. 2010)
using BLASTX in conjunction with the OrfPredictor server
(e value = 1e-5) (Min et al. 2005). All CLC transcripts had
an identified protein translation, 17 ABySS and 84 Velvet
transcripts did not show homology to sequences in the data-
base and were excluded in subsequent analyses.

Reference Selection

The peronosporalean oomycete Pyt. ultimum was chosen by
SCAN as the reference in the network for our A. hypogyna
data. The genome sequence of the more closely related sapro-
legnian oomycete Sap. parasitica is available; however, this
species has a highly divergent proteome as a result of its
evolved specialization as a fish pathogen. Pythium ultimum
lacks the highly duplicated genomic features of Phytophthora
spp. and shares a necrotrophic lifestyle with A. hypogyna

making it a better reference for our similarity network analysis
approach (Tyler et al. 2006; Haas et al. 2009; Levesque et al.
2010). Despite A. hypogyna having a more distant evolution-
ary relationship to Pyt. ultimum than Sap. parasitica, Pyt.
ultimum was preferred by SCAN to Sap. parasitica as a
better reference.

Network Construction: Transcriptome Networks

We tested transcriptomes from three organisms, using the
following reference data sets for each, downloaded from the
NCBI. Plasmodium falciparum assemblies were analyzed in
similarity networks with sequences from P. cynomolgi, P. fal-
ciparum, P. knowlesi, P. vivax, Theileria parva, and T. annulata.
Assemblies from E. coli str. K-12 substr. MG1655 were analyzed
in similarity networks with sequences of E. coli str. K-12 substr.
MG1655, E. coli O157:H7 str. Sakai, E. coli SE11, E. coli O26:H11
str. 11368, Salmonella enterica, and Shigella dysenteriae.
Sequences in each of these data sets were BLASTed all against
all (using the relevant BLASTP, BLASTN, BLASTX, and
TBLASTN programs) using 1e-20 e-value cutoff and a maxi-
mum of 5,000 hits per query. The corresponding similarity
network was then built by creating an edge between two
sequences if the corresponding BLAST e-value was lower
than 1e-20 and the identity percentage was greater than
20%. We used BLAST 2.2.21 to perform all possible pairwise
comparisons. BLASTX (default parameters) was used to com-
pare a transcript with a reference protein sequence, BLASTN
(default parameters) was used to compare transcript se-
quences, TBLASTN (default parameters) was used to com-
pare the reference protein sequences to the transcripts
sequences, and BLASTP (default parameters) to compare ref-
erence sequences. Using these parameters, it is unlikely that
closely related sequences would not be included in the net-
work. All these steps are automated in the EGN software,
freely available at http://www.evol-net.fr (last accessed May
23, 2013).

Network Construction: Oomycetes Network

Networks used in this study consisted of the translated tran-
scripts from de novo assemblies of the A. hypogyna and the
protein sequences from Pyt. ultimum, Phy. infestans, Phy.
ramorum, Thalassiosira pseudonana, and Sap. parasitica.
Networks were reconstructed as earlier, using protein se-
quences, as indicated in Armbrust et al. (2004), Tyler et al.
(2006), Haas et al. (2009), and Levesque et al. (2010). In brief,
all sequences were compared against one another using the
BLAST algorithm (Altschul et al. 1997). Pairs of sequences
were connected in a network if their BLAST e-value was less
than 1e-20 and the two sequences presented >50%, >60%,
>70%, >80%, >90%, or >95% similarity.

Network Analysis

We produced two types of networks: stringent networks with
“full homology" edges (enforcing a >90% sequence length
alignment threshold for pairs of sequences to be connected)
and inclusive networks with both “full" and partial homology
edges (when sequences presented a significant similarity for a
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shorter portion of their sequences). Using a custom python
script, now implemented in SCAN, these gene similarity net-
works were filtered to contain only connected components
with at least one reference node (i.e., Pyt. ultimum for the
oomycetes data set) and one transcript node (e.g., A. hypo-
gyna for this data set). In the E. coli str. K-12 substr. MG1655,
Sac. cerevisiae uid 128, and Pla. falciparum analyses, every
species in the network was used as a potential reference,
and networks were filtered as above.

Filtered networks were analyzed using the custom R script,
SCAN (or “SCAN stringent”) (fig. 2), available at http://evol-
net.fr (last accessed May 23, 2013). SCAN measures six distinct
network features for each connected component: proportion
of reference and transcript nodes, articulation point (local/
global), longest monochromatic chain, proportion of nodes of
degree one that are reference/transcript, and the JI. These
analyses were performed on a computer with 2 quadcore
Intel Xeon E5430 CPUs running at 2.66 GHz. The multi-
threaded version of SCAN processed the oomycete data
sets described earlier in 15 min using eight cores.

For each connected component and for each index
(except JI and longest monochromatic chain), we computed
a proportion test (Newcombe 1998) between reference nodes
and transcript nodes to determine whether their proportion
in a connected component is significantly different (P-value
threshold of 0.05). If the two proportions (i.e., of reference and
transcript nodes) are not significantly different, we considered
this connected component as “good” for this index.

For each index measure (except JI), the KS test (P-value
threshold of 0.05) was used to compare the distributions of
values of transcripts and reference nodes over all connected
components. Under the KS test, the null hypothesis is that
the two samples follow the same distribution. If so, the KS test
D statistic equals 0, otherwise it is positive. A significantly large
value of D allows for rejection of the null hypothesis, as mea-
sured by a P value estimating the probability for D� 0. SCAN
utilizes the KS test to identify for each assembly, which net-
work showed no significant differences in the distributions of
index values for test and reference transcripts, for the highest
number of indices.

The network we considered best was the one having the
highest number of quality transcripts (according to propor-
tion tests), and in the event of a tie, we selected the network
having the highest number of distributions of indices for
which no significant difference can be found between the
reference and the transcript (according to the KS test).
SCAN outputs a list of good quality transcripts from the se-
lected network for each assembly method. To summarize,
SCAN identifies transcripts that best resemble sequences
from the biological reference. Each assembly is evaluated
against the sequences of user-defined reference organisms
in the network, using up to six network-based indices. Each
connected component within the network is assessed based
on: 1) the proportion of reference and transcript data, 2) the
proportion of local and 3) global articulation points formed
by reference and transcript data, 4) the longest monochro-
matic chain, 5) the proportion of transcript/reference data
with a degree of 1, and 6) the JI of a pair of transcript and

reference sequences. These indices are used to estimate to-
pological features of the transcript sequences in comparison
to reference data. Good transcripts are identified as those
(directly connected to a reference sequence, in “SCAN strin-
gent”) that present topological properties, which cannot be
distinguished from that of the reference sequences.

Proportion of Transcripts and References in
Connected Components

The proportion of transcripts (nt) and reference (nr)
sequences in each connected component was computed to
test whether an assembly produced the same number of gene
transcripts as exists in the reference connected component
(fig. 2A). In cases of incomplete assembly, an excess of tran-
scripts over reference proteins is expected in the connected
component, because nt partial assemblies will connect to
their nr< nt homologs. Node proportion was calculated by
dividing the total number of transcript (or reference) nodes in
each connected component by the total number of nodes in
that connected component.

Proportion of Transcript and Reference Articulation
Points in Connected Components

For each connected component, we calculated the propor-
tion of transcripts and reference nodes that were articulation
points on two scales, local and global (fig. 2B). Local articula-
tion points were tested by selecting all direct neighbor(s) for
each transcript or reference node to create a new “local”
connected component. If removing the transcript or refer-
ence node disconnected this “local” graph, this node was
counted as a local articulation point. Global articulation
points were tested by individually removing transcript or
reference nodes in entire connected components. If removing
an individual transcript or reference node disconnected the
connected component, this node was counted as a global
articulation point. The corresponding proportions were
then calculated over the total number of nodes in the con-
nected component. Both local and global articulation points
are separate indices in the SCAN output.

Proportion Transcript and Reference of Degree One

The number of nodes of degree one for the transcript and
the reference sequences for each connected component
was calculated. We obtained their respective proportion by
dividing these numbers by the total number of nodes in the
connected component (fig. 2D). The two proportions were
compared with a proportion test (P-value threshold> 0.05).
If there is no significant difference between these proportions,
this connected component is labeled as “good.”

Longest Monochromatic Chain

The shortest path between any pair of nodes corresponds to
the minimal number of edges required to connect these two
nodes. If the shortest path between two nodes sharing a given
label, that is, two nodes representing contigs from the
same test condition, goes only across nodes with this given
label, we call such a shortest path a monochromatic path
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(fig. 2C). For each connected component, SCAN computes
the length of the longest monochromatic path connecting
reference sequences and the length of the longest monochro-
matic path connecting transcripts generated in a given test
condition. For components in which there is no monochro-
matic path, this value is 0. We did not compute any propor-
tion test for this index because it is not a proportion.
We considered all connected components in the network
as “good,” if the two distributions (transcript and reference)
are not significantly different according to the KS test (P-value
threshold of 0.05).

Jaccard Index

Unlike previous indices, the JI applies to a pair of nodes and
not to an entire connected component. The JI was calculated
for connected components in which a transcript node was
directly connected to at least one reference node (fig. 2E).
For each edge joining a reference and a transcript node, JI
was calculated as the number of common neighbors divided
by the total number of neighbors for these two nodes.
Components for which at least one JI was greater than 0.9
were labeled as good.

Supplementary Material
Supplementary tables SI1–SI4 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjournals.
org/).
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