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Abstract

Interest in congruence in phylogenetic data has largely focused on issues affecting multicellular organisms, and animals in
particular, in which the level of incongruence is expected to be relatively low. In addition, assessment methods developed
in the past have been designed for reasonably small numbers of loci and scale poorly for larger data sets. However, there
are currently over a thousand complete genome sequences available and of interest to evolutionary biologists, and these
sequences are predominantly from microbial organisms, whose molecular evolution is much less frequently tree-like than
that of multicellular life forms. As such, the level of incongruence in these data is expected to be high. We present
a congruence method that accommodates both very large numbers of genes and high degrees of incongruence. Our
method uses clustering algorithms to identify subsets of genes based on similarity of phylogenetic signal. It involves only
a single phylogenetic analysis per gene, and therefore, computation time scales nearly linearly with the number of genes in
the data set. We show that our method performs very well with sets of sequence alignments simulated under a wide
variety of conditions. In addition, we present an analysis of core genes of prokaryotes, often assumed to have been largely
vertically inherited, in which we identify two highly incongruent classes of genes. This result is consistent with the
complexity hypothesis.

Key words: phylogenetic congruence, phylogenetic networks, spectral clustering, lateral gene transfer, prokaryote
phylogeny.

Introduction
The notion of phylogenetic incongruence predates
molecular phylogeny, though the many biological sources
of incongruence in molecular data (e.g., hybridization
[McBreen and Lockhart 2006; Koblmüller et al. 2007],
incomplete lineage sorting [Hudson 1983; Hobolth et al.
2011], lateral gene transfer [Bapteste et al. 2009]) have
certainly raised awareness of the importance of incongru-
ence among evolutionary biologists in recent years. As
sequence databases have grown and computational power
has increased, numerous congruence assessment methods
have been developed. These methods can loosely be
divided into two classes. The topology-based methods
use as null hypothesis complete lack of correlation between
trees and directly compare topologies (Lapointe and Rissler
2005; de Vienne et al. 2007; Nye 2008; Puigbò et al. 2009).
These tests have used a variety of distance metrics between
tree topologies, including partition metrics (Robinson and
Foulds 1981; Penny et al. 1987), maximum agreement
subtrees (Bryant et al. 2003), pruning distances (Křivánek
1986; Bordewich and Semple 2004; Wu 2009), quartet
distance (Estabrook et al. 1985), and path distance (Steel
and Penny 1993). Distances between weighted trees (i.e.,
taking branch lengths into account) have also been
described (e.g., Waddell et al. 2007). Other methods, such
as the Congruence Among Distance Matrices test
(Campbell et al. 2009, 2011), compare distance matrices

rather that trees to assess the null hypothesis of incongru-
ence. Topology-based methods have been very useful in
fields such as phylogeography and studies of coevolution,
where any correlation in different trees is of interest.

For phylogenomics and multigene phylogeny, how-
ever, the interest often lies in determining whether tree
topologies for different genes are exactly identical, either
to demonstrate that different markers share the same
pattern of inheritance or that combined analysis is justi-
fied. In this case, a null hypothesis in which genes share
the same topology is used and rejected in order to iden-
tify incongruence. Normally, these methods are classified
as character-based because topologies are not compared
directly; rather, the methods evaluate the fit of different
topologies to different markers.

However, existing methods have largely been developed
with eukaryotes in mind. Yet most available genome sequen-
ces are from prokaryotes and viruses (1,454 and 2,567, respec-
tively, compared with 41 from eukaryotes according to NCBI
Genome, http://www.ncbi.nlm.nih.gov/sites/genome last
accessed: 6 May 2011), which also make up most of the bi-
ological diversity on earth. Sequence evolution of these mol-
ecules faces very different constraints compared with
sequences from eukaryotes, as horizontal (lateral) evolution
occurs far more frequently (Bapteste et al. 2009). Whereas
statistical tests for congruence often postulate congruence
as the null hypothesis, failure to reject congruence with
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phylogenetic data from prokaryotes may indicate a lack of
phylogenetic signal, rather than real congruence in the data
set. Therefore, congruence methods may underestimate the
level of incongruence in these data.

Moreover, most sequence-based congruence tests
were not designed for modern phylogenomic data sets.
The incongruence length difference (ILD) test (Farris
et al. 1994) can assess congruence in a multigene data
set only by testing whether the entire data set is congru-
ent and cannot identify which genes are congruent with
one another; likelihood-based equivalents (Huelsenbeck
and Bull 1996; Waddell et al. 2000) share this property.
Both the ILD (Planet and Sarkar 2005) and likelihood
ratio tests for congruence (Leigh et al. 2008) have been
adapted to identify congruent subsets of multigene data
sets, but these hierarchical tests scale poorly with the
number of markers in the data set and are plagued with
multiple testing problems.

Clustering-based classification methods have also been in-
vestigated for the purpose of assessing congruence (Brochier
et al. 2002; Gribaldo and Philippe 2002; Matte-Tailliez et al.
2002; Nye 2008). Different clustering methods exist, including
hierarchical methods (such as the unweighted pair group
method with arithmetic mean [UPGMA]), the classic k-means
algorithm, and nonlinear dimensionality reduction methods
such as multidimensional scaling (Sammon 1969; Edwards
and Oman 2003) or spectral clustering methods (e.g., Ng
et al. 2001; Zelnik-Manor and Perona 2004; Newman
2006), and unsupervised methods for estimating the number
of clusters (e.g., Tibshirani et al. 2001; Von Luxburg 2007) have
been developed. Clustering is immune to multiple testing er-
rors associated with repeated or hierarchical statistical tests
because there is no confidence level below which some null
hypothesis is rejected and because there is no repeated testing
involved.

Here, we present a novel algorithm for clustering by phy-
logenetic distance (CPD), implemented in the application
Conclustador for evaluating congruence in phylogenomic
data from complete genomes. The distances used by this
algorithm are related to distances used in topology-based
congruence tests but take into account uncertainty in
phylogenetic estimates by representing each marker by a
distribution, rather than a single tree. The CPD algorithm
uses clustering and scales linearly with the number of
markers in the data set with respect to the slow phyloge-
netic analysis step. We demonstrate the effectiveness of our
method with sequence data simulated under a variety of
conditions, as well as with a recently published data set of
114 alignments and 100 operational taxonomic units
(OTUs) (Puigbò et al. 2009).

Despite the wealth of literature on phylogenetic con-
gruence, definitions of congruence have varied. In this
work, we will use ‘‘incongruence’’ to mean specifically to-
pological incongruence, rather than differences in other
evolutionary parameters among phylogenetic markers
(e.g., relative evolutionary rate in different lineages;
Waddell et al. 2007; Leigh et al. 2008). In addition, we
do not consider incongruence to be an all-or-nothing

property; that is, a pair of tree topologies can be more
congruent than another pair if they share a larger number
of phylogenetic relationships (local congruence) while
remaining globally incongruent.

Materials and Methods

Algorithm Overview
The CPD algorithm involves calculating Euclidean distances
between markers based on a distribution of phylogenetic
trees for each gene, then clustering these distances. Effec-
tively, this is a topology-based method, but each gene is
represented by a distribution of topologies, and no explicit
hypothesis of congruence or incongruence is tested. Ulti-
mately, the goal is not to assess whether the set of markers
is congruent or incongruent, but rather to ‘‘let them fall
where they may’’: that is, to find the other markers with
which they share a level of congruence that is distinguish-
able from the background of the entire data set. This algo-
rithm is implemented in Conclustador, available by request
from the authors.

Phylogenetic Analysis
Conclustador takes as input a distribution of phylogenetic
trees for each marker. Phylogenetic analysis is not inte-
grated into Conclustador, as numerous available methods
might be preferred by different users. We evaluated the
performance of Conclustador with tree distributions in-
ferred by the neighbor-joining (NJ) distance method, max-
imum likelihood (ML), maximum parsimony (MP), and
Bayesian inference (BI). All scripts used for phylogenetic
analysis were written in Python and are distributed with
Conclustador.

With the exception of the BI method, all distributions
were obtained from either 100 (ML) or 1,000 (MP and
NJ) nonparametric bootstrap replicates for each marker.
For the MP method, we used PAUP* (Swofford 2003), with
the heuristic search option. For ML, we used RAxML
(Stamatakis 2006) with the WAG substitution model
(Whelan and Goldman 2001) and the ‘‘rapid bootstrap-
ping’’ method (Stamatakis et al. 2008). We used Tree-Puzzle
(Schmidt et al. 2002) to estimate distances quickly under
the WAG model with constant rates across sites, along with
BioNJ (Gascuel 1997) to infer distance trees.

BI was performed using PhyloBayes (Lartillot and
Philippe 2004) with the C20 substitution model (Quang
et al. 2008) and four-class discrete C distribution. Burnins
were determined automatically by a method adapted from
that of Beiko et al. (2006). Briefly, the mean log-likelihood
was calculated from sliding windows of 500 consecutive
samples of the chain, with a slide of 50 samples. The burnin
was identified as the center of the first window whose
mean log-likelihood was within 1 standard deviation of
the mean log-likelihood of the last window of the chain.
The burnin was thus constantly adjusted until the esti-
mated value was less than 10% of the remaining postburnin
samples, and the remaining samples were used as the
distribution of trees.
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Distance Calculation and Clustering
For a given distribution of trees, Conclustador begins by
calculating a matrix of distances between markers. The
distances used are Euclidean distances calculated between
observed bipartition frequencies in tree distributions
(Bayesian posterior or bootstrap distributions), as de-
scribed in equation (1), where B is the set of all possible
bipartitions of taxa and P(bji) is the posterior probability
(or bootstrap frequency) of bipartition b, given gene i.

di;j 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
beB

ðPðbjiÞ � PðbjjÞÞ2
r

: ð1Þ

If a bipartition is not observed in the posterior or
bootstrap distribution for a given gene, its probability is
assumed to be 0; thus, in practice, it is unnecessary to con-
sider unobserved bipartitions when calculating di,j for a
given pair of genes. In cases where genes do not share
exactly the same set of taxa, taxa missing in either gene
are removed prior to calculating the distance between
markers. If the number of taxa shared is less than four,
the distance is considered infinitely large. Because the dis-
tance value described in equation (1) increases as a function
of the number of taxa shared between the two genes, dis-
tances are divided by (2xi,j � 6)1/2, the maximum distance
between genes (i.e., if they shared no nontrivial bipartitions
with frequency greater than zero; eq. 2), such that they re-
mained constant with respect to the number of taxa shared
between the two markers, xi,j (supplementary fig. S1,
Supplementary Material online)

d#i;j 5
di;j

ð2xi;j � 6Þ1=2
: ð2Þ

Because elements of the set of bipartitions are not
independent (i.e., clans are nested within clans), the ‘‘axes’’
of the space in which distances are estimated are not
orthogonal. This could potentially lead to erratic behavior,
as a small number rearrangements could produce very large
distances. In order to verify that strange behavior is rare, we
simulated data under a wide variety of scenarios (described
below).

Markers can then be clustered based on these distances.
We implemented two different clustering methods in order
to compare their performance. We chose not to use hier-
archical clustering because errors that occur early on in the
clustering process can have drastic effects on the clusters
found. Instead, we first used the classic k-means method
(MacQueen 1967). In k-means, centroids are first chosen
either at random or by some heuristic and then individual
observations are assigned to the cluster defined by the
nearest clusters. Next, centroids are refined by finding
the point that minimizes the average distance to members
of each cluster. The process of assigning observations to
clusters and then refining centroids continues iteratively
until convergence. In this case, because distances between
genes were defined but genes themselves were not defined

by positions in space, the centroids were necessarily as-
signed to the gene with the smallest total distance to other
genes within a cluster, rather than to the coordinates of the
center of the cluster.

With k-means, centroids are normally initially chosen at
random from among the data points, which can lead to
a local optimum, so clustering is repeated several times
from independent starting points to increase the chance
of finding the globally optimal clusters. Instead of using
a fixed number of iterations, Conclustador implements
the Death of Dodos algorithm (Roberts and Solow 2003;
Vinh le and Von Haeseler 2004) in order to estimate the
number of rounds of k-means required to find the global
optimum.

We also implemented a spectral clustering method
(Ng et al. 2001; Zelnik-Manor and Perona 2004). Spectral
clustering is particularly useful when members of a cluster
are sometimes closer to members of other clusters than to
some of the members of their own cluster. In our imple-
mentation, the distance matrix is used to construct the un-
directed k-nearest neighbor graph (i.e., connecting each
node to its k-nearest neighbors). The choice of k for this
graph is important because the graph must be connected
or spectral clustering tends to find the trivial clusters
formed by connected components (Von Luxburg 2007).
The k is initially set to log(n), where n is the number of
nodes in the graph (genes), and then is iteratively incre-
mented until the graph is fully connected. This graph is
then used to construct an affinity matrix A given by equa-
tion (3), in which entries corresponding to pairs of nodes
are non-zero if and only if these nodes are adjacent in the
k-nearest neighbor graph, with affinities calculated accord-
ing to the method of Zelnik-Manor and Perona (2004), in
which local scaling of affinity values is used to accommo-
date clusters of different densities. Affinity values for a pair
of nodes i,j were scaled by rirj, the product of the distances
of each node to its kth nearest neighbor.

Ai;j 5

(
exp

n � d2
i;j

rirj

o
i; j adjacent

0 otherwise
: ð3Þ

As described by Ng et al. (2001), the normalized Lapla-
cian for the affinity matrix A was then calculated, and its
eigenvectors were determined. For a given number of clus-
ters C, the first C eigenvectors were normalized to norm 1
and used to form a n � C matrix. The rows of this matrix
were then clustered by average linkage. We chose to use
hierarchical clustering at this point because we found that
it tended to find clusters that were identical to the optimal
k-means solution, whereas k-means heuristics found the
optimal solution less frequently (results not shown).

Identification of the Number of Clusters
The k-means and spectral clustering methods require that
the number of clusters be given as input. Because this is
generally not known for multilocus phylogenetic data,
we investigated methods of estimating the number of
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clusters. For spectral methods, Conclustador uses the
eigengap heuristic, described in Von Luxburg (2007), in
which the number of clusters C is chosen such that the first
C eigenvalues k1, . . . , kC are relatively large and kCþ1 is
much smaller. With k-means clustering, Conclustador esti-
mates the number of clusters using the CH index (Caliński
and Harabasz 1974), given in equation (4):

CHðCÞ5 BðCÞ=ðC � 1Þ
WðCÞ=ðn � CÞ ð4Þ

B(C) and W(C) are the between- and within-cluster sums of
squares for C clusters, and n is the number of points (i.e.,
genes).

Simulations
Simulations were used to evaluate the performance of Con-
clustador under different conditions (supplementary table
1, Supplementary Material online). All genes were simu-
lated using Seq-Gen (Rambaut and Grassly 1997). For
a given simulation, 100 genes were produced by randomly
generating a single tree topology and then LGT was sim-
ulated by rearranging this topology through a series of sub-
tree pruning and regrafting (SPR) operations to produce
the underlying topologies of each gene cluster. Tree topol-
ogies were rooted so that SPR rearrangements might reflect
relationships expected in real LGT events as much as pos-
sible; however, to simplify simulations, we did not constrain
SPR operations to prevent impossible scenarios, for exam-
ple, transfer of a gene to an extinct ancestor of a contem-
porary lineage. For one additional simulation set,
underlying topologies for each cluster were chosen inde-
pendently at random, rather than according to SPR rear-
rangements. For each gene within a cluster, internal and
external edge lengths were drawn from separate C distri-
butions. The shape parameter for rates across sites (a) and
gene length were also drawn from C distributions. For most
simulations, a number of pruning operations were per-
formed on the cluster tree. Because our method is aimed
at complete prokaryotic genomes, this pruning method
was intended to simulate the differences in taxon compo-
sition that might be expected in data sets composed of
complete genome sequences, rather than those expected
in eukaryotic data sets from expressed sequence tag or se-
lective sequencing.

All simulations were analyzed with Conclustador using
tree distributions inferred by the BI method described
above. In addition, for the md1 simulation, Conclustador
was applied to bootstrap distributions obtained from
the distance, ML, and MP methods described above.

Assessing Phylogenetic Structure in Gene Clusters
To visualize the phylogenetic information in groups iden-
tified by Conclustador, supernetworks were constructed
for each cluster using data available from single-gene phy-
logenetic analyses performed by BI. For each gene within
a cluster, a consensus tree topology was produced from
the posterior distribution. In order to reduce the number
of insignificant splits in the supernetworks, only splits

with posterior probability of 0.5 or greater were retained.
SplitsTree4 (Huson and Bryant 2006) was then used to
construct a supernetwork from these gene trees by the
Z-closure method (Huson et al. 2004), using default
options. The reason for this choice (i.e., the use of net-
works rather than trees) is that we expect the gene trees
that fall in a given cluster to share more phylogenetic
properties with each other than with any other gene tree
in the data set, yet gene trees within a cluster do not nec-
essarily share a single underlying tree. We call these genes
with significant evolutionary resemblances ‘‘evolutionary
doppelgängers,’’ a notion that represents more accurately
the evolutionary history of prokaryotic genes, where the
traditional notion of global congruence (identical trees) is
too strict to identify local phylogenetic congruences (and
overlaps) between gene trees.

Analysis of Core Prokaryotic Genes
In order to evaluate the performance of Conclustador with
biological sequence data, we analyzed 114 alignments from
the data set of Puigbò et al. (2009) in which at least 90% of
the 100 prokaryotes in the data set were represented, de-
scribed by Puigbò et al. as ‘‘nearly universal trees’’ or NUTs.
We used Bayesian posterior distributions of gene trees con-
structed using PhyloBayes (Lartillot and Philippe 2004) with
the C20 substitution model (Quang et al. 2008) and with
automated burnin estimation. Genes were assigned to clus-
ters using Conclustador with the spectral clustering
method, estimating the number of clusters by the eigengap
heuristic.

Congruence within individual clusters was then assessed
by the ILD test (Farris et al. 1994) and two likelihood ratio
tests (Huelsenbeck and Bull 1996; Waddell et al. 2000). Be-
cause of restrictions of the likelihood ratio tests, taxa not
present in all markers were removed from the data set,
leaving a total of 41 taxa. The ILD test was performed
on both the complete data set and the 41 taxon data
set using PAUP* (Swofford 2003) with 100 repartitioning
iterations, saving a single most parsimonious tree at each
inference step (i.e., multrees 5 no). Both likelihood ratio
tests were performed using trees and likelihoods estimated
by RAxML with the WAG model and the CAT approxima-
tion for rates across sites for tree inference and four-class
discretized C-distributed rates for likelihood estimation.
Significance of the Huelsenbeck–Bull test was assessed
based on 100 parametric bootstrap replicates as well as
100 repartitioning replicates, as is used in the ILD test
(Farris et al. 1994). For parametric bootstraps, alignments
of the same length as real alignments were simulated using
Seq-Gen (Rambaut and Grassly 1997) under the WAG þ C
model, using the shape parameter and tree inferred from
the concatenated cluster data set. Significance of the Wad-
dell test was assessed based on 1000 RELL (Kishino et al.
1990) nonparametric bootstrap replicates. Phylogenetic
supernetworks for individual clusters and for the complete
NUTs data set were then constructed as described above.

In addition, we analyzed the same data set of 114 genes
with CONCATERPILLAR (Leigh et al. 2008) with an alpha level of
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0.01 and the WAG substitution model with a four-class
discretized C model for rates across sites. CONCATERPILLAR

uses the likelihood ratio test for congruence developed
by Huelsenbeck and Bull (1996) in a hierarchical framework
to identify congruent subsets of genes. Finally, we produced
cigarette plots (Bapteste et al. 2008) for the combined set of
114 NUTs, as well as for each cluster identified by Conclus-
tador and for subsets identified by CONCATERPILLAR to look
for potential issues of tree reconstruction artifacts and lack
of phylogenetic signal in each class of congruent genes (see
supplementary material 1, Supplementary Material online
for a detailed description of this method and its results).

Functional Analysis of Clusters of Core Genes
Markers within each of the clusters identified by Conclus-
tador were assigned to 15 functional COG/NOG categories
(Tatusov et al. 1997). We tested whether some functional
categories were overrepresented using a Fisher’s exact test
and a hypergeometric test. The P values were adjusted for
multiple testing using a Bonferroni correction (Shaffer
1995).

Taxonomic Consistency in Clusters of Core Genes
We defined eight taxonomic categories (Archaebacteria,
crenarchaeota, euryarchaeota, proteobacteria, b-proteo-
bacteria, cyanobacteria, firmicutes, and planctomycetales).
For each taxonomic category and each tree in each cluster
defined by Conclustador, we computed a P-score describ-
ing the distribution of the taxa belonging to this category
on the tree. A P-score of 1 indicates that all the members of
the taxonomic category grouped together on the tree,
whereas P-scores . 1 indicate that members of the cate-
gory are increasingly scattered and not monophyletic
(Schliep et al. 2011). For each tree, we summed the P-scores
and represented the distribution of this sum for trees of
cluster 0 and cluster 1 by two histograms. We tested that
these two distributions differed by a Wilcoxon rank-sum
test.

Results and Discussion

Conclustador Effectively Identifies Congruent
Clusters
We used Conclustador to identify congruent clusters with
data simulated according to various scenarios. In each case,
Conclustador was used with spectral clustering by estimat-
ing the number of clusters using the eigengap heuristic, as
well as with both k-means and spectral clustering with the
correct number of congruent sets specified. Figure 1 sum-
marizes the success of Conclustador for all simulations, in
terms of the proportion of error due to each falsely
identified congruent pairs (analogous to ‘‘false negatives’’
in a statistical testing framework with congruence as the
null hypothesis) and falsely identified incongruent pairs
(‘‘false positives’’). Histograms showing the distribution
of the number of estimated clusters for all simulations
using the eigengap heuristic are shown in (supplementary
fig. S2, (Supplementary Material online).

In simulations with different numbers of missing taxa
(fig. 1a), the success of Conclustador decreased as the num-
ber of missing taxa increased. However, in general, the per-
formance of either spectral or k-means clustering was quite
good: with spectral clustering and an estimated number of
clusters, even in the simulations with up to three branch
deletions per gene, on average only 7% of truly congruent
pairs were mistakenly assigned to different clusters (i.e.,
they were assigned to the same cluster with 93% accuracy),
whereas a mean of only around 1% of truly incongruent
pairs were assigned to the same cluster (i.e., they were as-
signed to different clusters with 99% accuracy).

Spectral clustering tended to outperform k-means more
frequently when data were simulated with more branch
deletions. This is likely because spectral clustering can re-
cover clusters whose individual members are sometimes
quite distant, providing they are close to at least some
members of the correct cluster (for an example in 2D,
see Ng et al. 2001). This phenomenon is likely to occur
when gene alignments share few OTUs in common with
some other alignments in the same cluster but more OTUs
with alignments in another cluster. As an extreme example,
consider a pair of genes that have always been inherited
vertically, A and B, that overlap by fewer than four taxa
(e.g., due to gene deletion in at the base of different major
lineages) and a third gene from a different cluster, C, that
shares more than four taxa with A but has been transferred
laterally a number of times. With k-means, A and C would
likely be assigned to the same cluster. With spectral clus-
tering, genes that are close together have a much greater
impact on the structure of clusters: The result is that pro-
vided there is some gene D (or series of genes) whose bi-
partition distance to both A and B is small, they will likely
be assigned to the same cluster (i.e., A and B are both closer
to some gene D than to C).

When the number of clusters was estimated using the
eigengap heuristic, the error increased slightly (both in
terms of the number of congruent pairs of markers falsely
identified as incongruent and the incongruent pairs falsely
identified as congruent). In the simulation with no branch
deletions, the number of cases in which congruence was
falsely identified appears to be substantially higher than
when the number of clusters was known. This drop in per-
formance can largely be attributed to a very small number
of simulations in which the number of clusters was dras-
tically underestimated (supplementary fig. S2a, Supple-
mentary Material online) combined with near perfect
performance for this set of simulations when the number
of clusters was known. Similarly, when data were simulated
along trees with up to three branch deletions, the eigengap
heuristic drastically overestimated the number of clusters
in one occasion.

Figure 1b shows the results of simulations with different
mean SPR distances between underlying tree topologies.
Alignments for these simulations were simulated along
trees with up to two branch deletions. Similarly to results
shown in figure 1a, the error associated with spectral
clustering was less than for k-means for all simulations
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FIG. 1. Error in cluster assignment with simulated data. Data were simulated under a variety of conditions, subjected to phylogenetic analysis,
and clustered using Conclustador. The error in cluster assignment was evaluated as the proportion of pairs of genes mistakenly assigned to the
same or different clusters. Violin plots represent the result of 100 simulations, with the white circle indicating the mean value and the width of
the violin indicating the density of values. a, c, e, and g, the vertical axis indicates proportion of congruent pairs of genes assigned to different
clusters; b, d, f, and h, the vertical axis indicates proportion of incongruent pairs of genes assigned to the same cluster. a and b, different
numbers of within-cluster branch deletions are indicated along the horizontal axis. c and d, mean SPR distance between underlying topologies
of different clusters is indicated on the horizontal axis. e and f, number of underlying topologies (‘‘true clusters’’) is indicated on the horizontal
axis. g and h, inference method used to produce the tree distribution inferred from simulated data sets is indicated on the horizontal axis.
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(in terms of the frequency with which both congruence
and incongruence were falsely identified), whether the
number of clusters was known or estimated. As the
similarity between topologies underlying different sets of
genes decreased (i.e., through an increased number of
SPR operations), the performance of Conclustador im-
proved, though even with a mean number of only two
SPR events, spectral clustering misidentified incongruence
in just over 5% of pairs (i.e., correctly identified congruent
pairs with almost 95% accuracy), and almost never falsely
identified congruence. Clearly, even when the clusters
themselves are close in terms of underlying tree topology,
Conclustador is able to distinguish clusters.

Clusters Do Not Represent Shared Tree-Like History
When Number of True Trees Is Large
We also looked at the performance of Conclustador when
alignments were simulated under different numbers of
topologies (i.e., different numbers of clusters). Figure 1c
shows the results of these simulations. For either two or
ten true topologies, Conclustador performed very well,
regardless of the clustering algorithm. Estimation of the
number of clusters was also accurate (supplementary fig.
S2c, Supplementary Material online).

When the data were simulated along 20 true topologies,
the number of clusters tended to be somewhat underesti-
mated by the eigengap heuristic, with modes around 15
and 18 clusters, although the mean of both errors remained
less than 10% (congruent pairs were assigned to the same
cluster and incongruent pairs to different clusters each
with 93% accuracy). Resolving 20 clusters from only 100
data points is a difficult problem in principle; that Conclus-
tador only slightly underestimates the number of clusters
at this point is in itself impressive. As the number of clus-
ters increased to 30 and 50, the underestimation of the
number of clusters became more severe: With 50 true clus-
ters, the number of clusters was nearly always estimated as
one. For data sets with a high degree of incongruence, then,
it is important to recognize that the identification of a sin-
gle cluster does not indicate a single tree-like evolutionary
history. We refer to genes included in such a cluster as ‘‘evo-
lutionary doppelgängers’’: Genes that come to resemble
one another by Conclustador’s criteria but do not strictly
share the same pattern of inheritance.

For a highly skewed distribution of genes among true
tree topologies (data set 50tS, in which 51 genes were
assigned to a single topology and the remaining 49 each
evolved along a different topology), the eigengap heuristic
nearly always identified two clusters. From the violin plot
(fig. 1c), it is clear that these clusters were generally orga-
nized such that the 51 alignments simulated along the
same topology fell within one cluster and the 49 simulated
along different topologies fell within the other. Again,
the 49 genes are evolutionary doppelgängers: clustering
represents increased phylogenetic similarity relative to
the entire data set but not a single tree-like history.

Obviously, there is no way to distinguish between a single
true topology and genes that all evolved along different

topologies (i.e., n true clusters for n genes) whatsoever
when estimating the number of clusters. Furthermore, clus-
tering methods tend to perform poorly when the number
of true clusters is large relative to the number of data
points. However, although the clustering methods used
here failed to separate genes that evolved along different
topologies as the number of clusters increased, there is
an important difference between, for example, the simula-
tions of the 50tS data set and the 2t data set, though in
both cases, two clusters were usually identified. Figure 2
shows phylogenetic supernetworks estimated from typical
simulations of the 50tS and 2t data set. In the case of the
50tS data set, one cluster’s network (fig. 2a) is clearly more
tree-like than the other’s (fig. 2b); moreover, because the
underlying topologies for the genes assigned to this cluster
were related through only two SPR operations on average,
there are many regions of the cluster phylogeny that re-
main tree-like, and network-like regions are evident in
the splits graphs. In contrast, when there were only two
true tree topologies underlying the data set, both cluster
phylogenies looked generally tree-like (fig. 2c and 2d).

When a data set might contain a high level of
incongruence, investigating whether clusters represent
a shared tree-like history or significant phylogenetic simi-
larity is then very important if tree-based phylogenetic
inference is to be performed on clusters. Although we have
examined the presence or absence of tree-like structure
using splits graphs, other data set exploration methods
have been developed for this purpose (e.g., Lento et al.
1995; White et al. 2007; Bapteste et al. 2008). In supplemen-
tary material 2 (Supplementary Material online), we show
the application of the method of Bapteste et al. (2008),
which uses heatmaps to determine whether apparent phy-
logenetic resolution is attributable to the presence of sites
to which the model fits poorly.

Sets Identified in Prokaryotic Core Genes Reflect
Different Frequencies of Lateral Gene Transfer
In addition to our studies with simulated sequence
alignments, we used Conclustador to analyze a set of
prokaryotic data published by Puigbò et al. (2009). One
hundred prokaryote OTUs were represented in this data
set of 114 gene alignments; in each alignment, at least
90% of OTUs were present (i.e., 90 sequences). Although
Puigbò et al. concluded that this data set was congruent,
such a result is inherently suspicious, given that frequent
LGT is expected for prokaryotic data. Most interestingly,
Conclustador recovered not one but two distinct clusters.
We assessed phylogenetic congruence of the genes within
each cluster using the ILD test (Farris et al. 1994) and likeli-
hood ratio tests described Waddell et al. (2000) and
Huelsenbeck and Bull (1996); congruence was rejected
by these tests (P , 0.001 for the Waddell test and
P , 0.01 for both the ILD and Huelsenbeck–Bull test).
Based on this result, we chose to infer networks, rather
than trees, to visualize phylogenetic relationships in each
of the clusters. We used the individual gene majority rule
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consensus trees (including only bipartitions with posterior
probabilities �0.5) to construct a supernetwork for each
cluster, shown in figure 3. The source of the incongruence
is clear from these networks. In figure 3a (cluster 0, 47
genes), the network is far more reticulated than the net-
work shown in figure 3b (cluster 1, 67 genes), with a number
of short edges joining the eubacterial and archaebacterial
domains. These networks indicate that Conclustador was
able to effectively distinguish between genes in cluster 1,
which have undergone substantial LGT, but only within

domains, and those in cluster 0, which appear to have
undergone a great deal more LGT events, including trans-
fers between Eubacteria and Archaebacteria. Interestingly,
the network inferred from the complete NUTs data set
(supplementary fig. S3, Supplementary Material online)
shows none of the interdomain reticulation found in clus-
ter 0; the level of LGT in this data set is thus hidden until
the two clusters are analyzed separately. Our analysis has
thus uncovered additional aspects of congruence in this
particular data set.

FIG. 2. Splits graphs from examples of simulations 50tS and 2t. Supernetworks were constructed for clusters inferred from simulations under
either 50 topologies to which gene assignment was skewed (a and b) or 2 topologies (c and d). For both of these simulations, two clusters were
inferred. However, the splits graph produced from one of the clusters from the 50tS simulation (b) is clearly less tree-like than the other
supernetworks, indicating that there are multiple distinct trees underlying the genes of this cluster.
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The two sets identified by Conclustador can be explained
in two mutually exclusive ways: either they are mostly com-
posed of genes with a common phylogenetic history (as was
observed in the 2t simulation) or one or both of these clusters
corresponds to a heterogeneous association of genes with
distinct evolutionary stories (as in the 50tS simulation).

For the same data set, CONCATERPILLAR proposed 73 distinct
clusters, most of which contained a single gene. Most of
these singletons had been assigned to cluster 0 by Conclus-
tador. The five largest sets of congruent genes identified by
CONCATERPILLAR contained at least six genes, most of which
corresponded to Conclustador’s cluster 1 (supplementary
table 2, Supplementary Material online). Because CONCATER-

PILLAR uses congruence as its null hypothesis, it is possible that
the genes in this data set evolved along more than 73 distinct
tree topologies but that there was insufficient phylogenetic
signal to reject congruence in some cases (see Bapteste et al.
2008 for an example). With 73 or more true topologies un-
derlying this data set, Conclustador would likely assign genes
to the same cluster if the patterns of phylogenetic relation-
ships they supported were similar (i.e., if they exhibit some
local congruence), even if they did not evolve along the same
tree. If CONCATERPILLAR groupings are meaningful, the two clus-
ters identified by Conclustador may result from combining
the most heterogeneous genes in cluster 0 while grouping
the genes with the greatest local congruence into cluster 1.

Our empirical results indeed more closely resemble the
50tS situation than the 2t situation met in our simulated

analyses: The two clusters recovered reflect different levels
of congruence. Using splits graphs, we verified whether
CONCATERPILLAR’s five largest groups were truly congruent
subsets rather than data sets with little phylogenetic signal.
Splits graphs for all five sets (supplementary fig. S4, Supple-
mentary Material online) displayed either very little reso-
lution of relationships or displayed a pattern evolution that
was not at all tree-like. Therefore, it appears that Conca-
terpillar did not identify shared vertical histories in its clus-
ters but rather insufficient phylogenetic signal to reject the
null hypothesis of congruence. Cigarette plots (see supple-
mentary Material 2, Supplementary Material online) were
consistent with this result.

Consequently, the recovery of two clusters by Conclus-
tador (combined with the understanding that these
clusters represent evolutionary doppelgängers) is a more
honest result than the apparently meaningless ‘‘congruent’’
subsets recovered by CONCATERPILLAR, as there is evidence for
multiple underlying trees for each of these clusters. The
two Conclustador clusters are thus an important step in
unraveling phylogenetic diversity within the NUTs.

Support for the Complexity Hypothesis:
Informational Genes Are Less Frequently
Transferred
In addition to revealing the diversity of evolutionary
processes underlying the NUTs data set, the clusters iden-
tified by Conclustador are biologically meaningful. They are

a. b.

FIG. 3. Splits graphs inferred from clusters identified among NUTs. For the two clusters identified by Conclustador in the 114 NUTs of the data set of
Puigbò et al. (2009), inferred supernetworks are shown here. Eubacterial taxa are shown in blue, whereas Archaebacteria are in red. For cluster 0 (a),
the splits graph is much more highly reticulated than that of cluster 1 (b), though both clusters display a high level of non-tree-like evolution.
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not random with respect to the functional classes of pro-
teins encoded by member genes (fig. 4). ‘‘Informational’’
genes involved in translation and ribosomal structure
and biogenesis are significantly overrepresented in cluster
1 with respect to cluster 0 (Fisher exact test P5 4.8 � 10�8;
hypergeometric P 5 3.4 � 10�8). This overrepresentation
of informational genes among the less-frequently trans-
ferred genes offers a remarkable independent confirmation
of the complexity hypothesis (Jain et al. 1999; Wellner et al.
2007), which suggested that informational genes, typically
members of large complex systems, are less prone to LGT
than other (‘‘operational’’) genes.

The complexity hypothesis is often invoked to argue
that the phylogeny of informational genes provides a valu-
able backbone to evaluate the vertical component of mi-
crobial evolution. In that regard, Conclustador’s cluster 1
defines a set of gene trees that more closely reflects a ver-
tical phylogenetic signal within the NUTs. These gene fam-
ilies have certainly been subjected to less frequent LGT, and
as a consequence informational genes have remained in
given genomes longer than others, but many other gene
families have moved around at a significantly higher rate
and have followed a different phylogenetic history from
those in cluster 1.

Around a tiny core of translation, ribosomal structure
and biogenesis genes, less affected by LGT, virtually all other
genes in cells have been more frequently transferred over
evolutionary time. Conclustador showed not only that
there is no large set of mostly vertical (i.e., congruent in
the classical sense) genes but also that the history of pro-
karyotic core genes appears increasingly fluid. Therefore,

the somewhat coherent phylogenetic signal of cluster 1,
even if it is useful for inferences about the most stable fea-
tures of prokaryotic phylogenesis, should still not be con-
flated with the rich and more complex phylogenetic history
of the organisms and that of species. Typically, genes from
many additional functional categories beyond those found
in cluster 1 (and even beyond the NUTs data set) are re-
quired to make an organism. Genes encoding defense
mechanisms, inorganic ion transport, and metabolism
and ‘‘general’’ functions are absent from cluster 1, whereas
those encoding transcription, intracellular trafficking, se-
cretion and vesicular transport, and lipid transport and me-
tabolism functions are completely absent from cluster 0.
Energy production and conversion, cell motility, secondary
metabolites biosynthesis, transport and catabolism, cyto-
skeleton, and signal transduction mechanisms are absent
in the entire NUTs data set.

Computation Time and Effectiveness of
Phylogenetic Shortcuts
Results presented above were all produced using
Conclustador with Bayesian posterior gene tree distribu-
tions estimated with PhyloBayes (Lartillot and Philippe
2004). However, Conclustador can also be used to assess
phylogenetic congruence using bootstrap distributions.
We compared the performance of Conclustador using BI
with the md1 data set with bootstrap distributions from
ML, MP, and NJ (fig. 1d). Performance was similar with
ML and BI and also reasonably good with NJ, although
the number of clusters was somewhat less accurately esti-
mated (supplementary fig. S2d, Supplementary Material

a. b.

FIG. 4. Differences in functional classification and taxonomic consistency between clusters. (a) Distribution of functional classes of genes
assigned to each cluster using Conclustador, as well as the combined data set of 114 NUTs. (b) Histogram of P-scores summed over all eight
taxonomic groups for each cluster. Larger P-score sums indicate that members of described taxonomic groups tend not to branch together in
inferred trees.
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online). With MP-based bootstrap distributions, however,
performance of Conclustador was substantially worse, par-
ticularly when the number of clusters was not known. In
fact, the number of clusters was most frequently estimated
as one, suggesting that clusters are less distinct than with
other methods. Clearly, if the tree distributions analyzed
with Conclustador are sufficiently bad, the result will suffer.

One advantage of using bootstrap distributions rather
than posterior distributions is that bootstrap analysis
can trivially be parallelized. In addition, NJ is considerably
faster than BI, and its performance was still relatively good.
This result is in agreement with the result of Deusch et al.
(2008): for large-scale analyses in which the phylogenetic
trees themselves are not the desired result, NJ is a suffi-
ciently good reconstruction method and is considerably
faster than ML or BI. This method might be a good choice
for phylogenomic analyses with more limited computa-
tional resources. However, even phylogenetic analysis by
BI can trivially be parallelized insofar as each gene analysis
can be performed independently.

Conclustador itself does not run in parallel, and its
computational complexity is theoretically O(n3) for the
eigenvector decomposition step, assuming spectral clus-
tering is used, whereas k-means is an NP-hard problem
(though in practice run time scales reasonably well with
the Death of Dodos algorithm and other heuristics). How-
ever, in practice, the time required to analyze even a fairly
large number of genes is relatively short: Analysis of a data
set of 1,100 posterior distributions from simulated align-
ments with 50 taxa took only an hour with an Intel Xeon
2.66 GHz CPU. The analysis of the 114 alignments of the
NUTs data set (Puigbò et al. 2009) took 33 min on the
same computer. In contrast, analysis of this same data
set with CONCATERPILLAR (Leigh et al. 2008) took 13 days
running in parallel over 20 Intel Xeon 3.0 GHz CPUs.
The time initially required to perform the phylogenetic
analysis of the 114 alignments should be added to Con-
clustador’s analysis time: With PhyloBayes, this took
around 9 h on 20 CPUs.

Conclusions
The results of our analyses of simulated data have shown
that Conclustador is able to discriminate between genes
evolving according to different tree topologies, even when
those topologies share large areas of local congruence.
Identification of sets of genes that share only local regions
of congruence is useful in phylogenomics because
phylogenetic analysis of these combined markers allows
resolution of shared relationships that individual genes
might not contain sufficient data to reveal, even if
network-based methods must be used. This is an advan-
tage that Conclustador holds over CONCATERPILLAR, which is
unable to identify genes that share only local congruence.
In the case where all or nearly all genes evolved along dif-
ferent trees, ‘‘congruent’’ subsets identified by CONCATER-

PILLAR might reflect only insufficient signal to reject the
null hypothesis. Differences in OTU composition of the

individual alignments affects the success with which Con-
clustador recovers phylogenetically congruent clusters,
but performance was good even with substantially differ-
ent taxon representation. However, as performance
declined when missing taxa increased, Conclustador
might perform poorly for investigating eukaryotic data
sets from incomplete genomes.

Yet, when applied to prokaryotic core genes from com-
plete genomes, Conclustador recovered clusters that did
not reflect distinct, strictly vertical signals, but instead
separated the data into clusters that contained genes with
different rates of conflicting signal. Genes belonging to
cluster 0 show much more frequent LGT than genes in
cluster 1, and distribution of functions between clusters
was also contrasted. Although care must be taken not to
immediately interpret clusters as congruent subsets of
genes, these clusters are clearly biologically meaningful.
Future uses of Conclustador should unravel even
more of the evolutionary processes at play in complete
prokaryotic genomes.

Supplementary Material
Supplementary figures S1–S7, tables S1 and S2, and mate-
rial S1 and S2 are available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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Puigbò P, Wolf YI, Koonin EV. 2009. Search for a ‘Tree of Life’ in the
thicket of the phylogenetic forest. J Biol. 8:59.

Quang LS, Gascuel O, Lartillot N. 2008. Empirical profile mixture
models for phylogenetic reconstruction. Bioinformatics 2317–2323.

Rambaut A, Grassly NC. 1997. Seq-Gen: an application for the
Monte Carlo simulation of DNA sequence evolution along
phylogenetic trees. Comput Appl Biosci. 13:235–238.

Roberts DL, Solow AR. 2003. Flightless birds: when did the dodo
become extinct? Nature 426:245.

Robinson D, Foulds L. 1981. Comparison of phylogenetic trees. Math
Biosci. 53:131–147.

Sammon JW. 1969. A nonlinear mapping for data structure analysis.
IEEE Trans Comput. 18:401–409.

Schliep K, Lopez P, Lapointe F, Bapteste E. 2011. Harvesting
evolutionary signals in a forest of prokaryotic gene trees. Mol
Biol Evol. 28:1393–1405.

Schmidt HA, Strimmer K, Vingron M, von Haeseler A. 2002. TREE-
PUZZLE: maximum likelihood phylogenetic analysis using
quartets and parallel computing. Bioinformatics 18:502–504.

Shaffer JP. 1995. Multiple hypothesis testing. Annu Rev Psychol.
46:561–584.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22:2688–2690.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap
algorithm for the RAxML web servers. Syst Biol. 57:758–771.

Steel MA, Penny D. 1993. Distributions of tree comparison metrics:
some new results. Syst Biol. 42:126–141.

Swofford DL. 2003. PAUP* 4.0 b10. Phylogenetic analysis using
parsimony (* and other methods). Sunderland (MA): Sinauer
Associates.

Tatusov RL, Koonin EV, Lipman DJ. 1997. A genomic perspective on
protein families. Science 278:631–637.

Tibshirani R, Walther G, Hastie T. 2001. Estimating the number of
clusters in a data set via the gap statistic. J R Stat Soc Ser B Biol
Sci. 63:411–423.

Vinh le S, Von Haeseler A. 2004. IQPNNI: moving fast through tree
space and stopping in time. Mol Biol Evol. 21:1565–1571.

Von Luxburg U. 2007. A tutorial on spectral clustering. Stat Comput.
17:395–416.

Waddell PJ, Kishino H, Ota R. 2000. Rapid evaluation of the
phylogenetic congruence of sequence data using likelihood ratio
tests. Mol Biol Evol. 17:1988–1992.

Leigh et al. · doi:10.1093/molbev/msr110 MBE

2784



Waddell PJ, Kishino H, Ota R. 2007. Phylogenetic methodology for
detecting protein interactions. Mol Biol Evol. 24:650–659.

Wellner A, Lurie MN, Gophna U. 2007. Complexity, connectivity,
and duplicability as barriers to lateral gene transfer. Genome Biol.
8:R156.

Whelan S, Goldman N. 2001. A general empirical model of protein
evolution derived from multiple protein families using a maxi-
mum-likelihood approach. Mol Biol Evol. 18:691–699.

White WT, Hills SF, Gaddam R, Holland BR, Penny D. 2007. Treeness
triangles: visualizing the loss of phylogenetic signal. Mol Biol Evol.
24:2029–2039.

Wu Y. 2009. A practical method for exact computation of subtree
prune and regraft distance. Bioinformatics 25:190–196.

Zelnik-Manor L, Perona P. 2004. Self-tuning spectral clustering. In: Saul LK,
Weiss Y, Bottou L, editors. Advances in neural information processing
systems. Vol. 17. Cambridge (MA): MIT Press. p. 1601–1608

Congruence Analysis in Massive, Messy Data Sets · doi:10.1093/molbev/msr110 MBE

2785


