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ABSTRACT

Motivation: Gene fusion is an important evolutionary process. It can

yield valuable information to infer the interactions and functions of

proteins. Fused genes have been identified as non-transitive patterns

of similarity in triplets of genes. To be computationally tractable, this

approach usually imposes an a priori distinction between a dataset in

which fused genes are searched for, and a dataset that may have

provided genetic material for fusion. This reduces the ‘genetic

space’ in which fusion can be discovered, as only a subset of triplets

of genes is investigated. Moreover, this approach may have a high–

false-positive rate, and it does not identify gene families descending

from a common fusion event.

Results: We represent similarities between sequences as a

network. This leads to an efficient formulation of previous methods

of fused gene identification, which we implemented in the Python

program FusedTriplets. Furthermore, we propose a new characteriza-

tion of families of fused genes, as clique minimal separators of

the sequence similarity network. This well-studied graph topology

provides a robust and fast method of detection, well suited for

automatic analyses of big datasets. We implemented this method in

the Cþþ program MosaicFinder, which additionally uses local

alignments to discard false-positive candidates and indicates

potential fusion points. The grouping into families will help distinguish

sequencing or prediction errors from real biological fusions, and

it will yield additional insight into the function and history of fused

genes.

Availability: FusedTriplets and MosaicFinder are published under

the GPL license and are freely available with their source code at

this address: http://sourceforge.net/projects/mosaicfinder.

Contact: pogorelc@isima.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

1.1 Biological and evolutionary motivation for studying

gene fusion

Fused genes, which result from the fusion of previously separate

genes, or parts of their sequences, are key evolutionary entities

(Patthy, 2003). It is generally believed that such events are rare,

and that the resulting genes are often deleterious. However, fused

genes can also encounter evolutionary success (Rogers and Hartl,

2012). Gene fusions have been reported in the three domains of

life, e.g. in (hyper)thermophilic Archaea (Rodrigues et al., 2007),

in bacteria (Nie et al., 2011; Pasek et al., 2006) and in Eukaryotes

(Durrens et al., 2008; Ekman et al., 2007; Zhou et al., 2008). As a

matter of fact, it has been estimated that two-fifths of the pro-

karyotic genes and more than two-thirds of the eukaryotic genes

are composed of several domains (Han et al., 2007), which have

been likely combined through fusion events. In the latter taxa,

gene fusions have been particularly well documented in animals

(Buljan et al., 2010; Marsh and Teichmann, 2010). In particular,

it was shown that domain rearrangements occurred in 35.9%

of gene families within the Drosophila clade (Wu et al., 2011),

significantly affecting processes of signalling and development.

More problematically, in humans, gene fusions were reported to

play a role in cancer. These fusions notably concerned relatively

large and conserved genes (Narsing et al., 2009) and members of

the rapidly accelerated fibrosarcoma family of protein kinases,

recently identified as characteristic aberrations of the most

common tumours of the central nervous system in children

(Lawson et al., 2011). The widespread occurrence of gene

fusion is notably explained by the fact that gene fusion can

lead to new functions (Long, 2000). For instance, in the ciliate

unicellular eukaryote Tetrahymena thermophila, gene fusions

contributed to the evolution of processes, such as phospholipid

synthesis, nuclear export and surface antigen generation (Salim

et al., 2011). Likewise, a gene fusion occurred in the early history

of fungi, resulting in cellobiose dehydrogenases involved in the

degradation of cellulose and lignin (Zamocky et al., 2004). Later,

the fungi Candida albicans benefited from the fusion of the 50

domain of ALS5 (agglutinin-like sequence 5) to the tandem

repeat region and 30 domain of ALS1 producing an original

ALS protein, likely involved in the adhesion to host and abiotic

surfaces (Zhao et al., 2011). As some of these fused genes

increased the fitness of their carrier, they were maintained in

genomes and gave rise to new gene families. Thus, various
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fused globins have been reported, occasionally supplanting the

parental gene form, as was the case for the fusion of �/� globin,

before the radiation of Paenungulata (the clade containing ele-

phants, dugongs and manatees and hyraxes) (Opazo et al., 2009).

Similarly, some of the toxins exploited by sea anemones to para-

lyse their preys have evolved by gene fusion, as they improved

the transcript stability and secretion of these toxins (Moran et al.,

2009). From an evolutionary perspective, fused gene families can

convey useful information about the history of life. They can

provide valuable markers for phylogenetic analysis. It was sug-

gested that these slow and rare events could be informative for

reconstructing the phylogeny of plants (Nakamura et al., 2007).

Moreover, Stechmann and Cavalier-Smith (2002) used a derived

gene fusion to propose a rooting of the eukaryotic tree. However,

convergences and lateral transfers of gene fusions have also been

reported, e.g. both in eukaryotes (Abdelnoor et al., 2006; Aleshin

et al., 2007; Makiuchi et al., 2007) and in diverse bacterial phyla,

where gene fusions of polyamine biosynthetic enzymes S-adeno-

sylmethionine decarboxylase (AdoMetDC, speD) and aminopro-

pyltransferase (speE) orthologues, catalysing de novo diamine to

triamine formation (Green et al., 2011), and fused genes involved

in histidine biosynthesis have been laterally transferred (Fani

et al., 2007 and so forth), suggesting that fused genes should

only be used as phylogenetic markers with great care (Waller

et al., 2006). Finally, from a functional perspective, fused gene

families serve as precious ‘Rosetta stones’ (Adai et al., 2004) for

the identification of potential protein–protein interactions and

metabolic or regulatory networks (Enright et al., 1999;

Marcotte et al., 1999). Our purpose in this article is to propose

a new method for finding fused genes and to group them into

families, which yields additional insight into the function and

history of these genes.

1.2 Fused gene detection: state of the art

All current in silico methods for finding fused genes are based on

sequence similarities (Durrens et al., 2008; Enright et al., 1999;

Marcotte et al., 1999; Rogers et al., 2009; Salim et al., 2011; Snel

et al., 2000; Suhre, 2004). The idea is that a fused gene (or com-

posite gene) is similar to two component genes, which are not pair-

wise similar and align on disjoint parts of the fused gene (Fig. 1).

In the rest of the article, we will use these terms of composite and

component genes, as proposed in Enright et al. (1999). We will

designate as a fused triplet a triplet of genes that exhibits this

non-transitive pattern of similarity. Many variations around

this idea have been implemented to identify composite genes

and their components since the Marcotte et al. and the Enright

et al. 1999 articles. They encounter four types of issues.

First, the number of fused triplets rapidly becomes enormous
for big datasets. Previous authors usually distinguished a priori
between a query dataset (genome), within which composite genes

were searched for, and a reference dataset (genomes, Clusters of
orthologous groups of proteins (COGs)), in which components
could be found. This greatly reduced the number of candidate

triplets, with the drawback that some triplets are missed, as only
a subset is investigated.
Second, some triplets may not result from a fusion but from

distant homologues, i.e. a pair of homologous sequences that dis-
play no similarity at the sequence level, but that are both similar to
a third intermediate sequence (Park et al., 1997). Two types of

tests are usually performed to exclude those false positives. The
first test cross-checks that component genes are not similar, either
with the same algorithm at a more permissive threshold [most of

the time a higher Basic Local Alignment Search Tool (BLAST)
E-value (Yanai et al., 2001)] or with a more accurate algorithm
(Enright et al., 1999) such as Smith–Waterman (Smith and

Waterman, 1981). The second test checks whether component
genes align along non-overlapping regions of the candidate com-
posite genes (Enright and Ouzounis, 2001; Yanai et al., 2001).

These controls eliminate many false positives.
Third, strongly supported fused triplets may result from

sequencing or prediction errors (Pasek et al., 2006), if a gene is

artificially split into two separate genes, or if two adjacent genes
are artificially fused into a single one. As those errors are pre-
sumably random and rare, a control is to identify other occur-

rences of candidate composite and component genes in closely
related genomes.
A fourth and central issue is the grouping of identified compo-

nent and composite genes a posteriori into gene families descend-
ing from a common fusion event. This grouping is necessary to
count evolutionary events and to perform general functional ana-

lyses. First, if one could group composite triplets descending from
a common fusion event, it would summarize the information con-
tained in this enormous number of triplets of genes into fewer

triplets of gene families, and, therefore, avoid long post-analyses
of the results. This is, however, far from obvious and computa-
tionally challenging. Second, grouping into families would reduce

the risk of distant homologies, as the absence of similarity between
any pair of genes from two component families is much more
robust than the absence of similarity between two component

genes. Third, potentially artefactual composite or component
genes would be easily identified, as they are the only representa-
tives of their family (trivial family of size one).

A proxy to achieve a grouping into families has been to map
genes on pre-existing family classifications (Suhre, 2004; Yanai
et al., 2001), usually Clusters of orthologous groups of proteins

(COG)/Clusters of orthologous groups of eukaryotic proteins
(Tatusov et al., 2003). This is only partially satisfactory, as by
definition, families of composite genes do not match a single

COG and, therefore, are overlooked by that approach. Novel
gene families (e.g. environmental) that have not been associated
to a COG family are likewise difficult to detect. Alternatively,

Enright and Ouzounis (2000) grouped composite genes into
families by simple linkage. This is straightforward, as similarity
between sequences is already computed to look for fused triplets.

But simple linkage will aggregate unrelated composite genes if
multiple fusion events have occurred in the history of some

Fig. 1. Composite (fused) gene C and its two components A and B.

A and B are similar to disjoint parts of C. A and B are dissimilar
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genes (Supplementary Fig. S1). Moreover, this method does not
allow reconstructing component gene families and their relation

with composite families.

1.3 Fused gene detection: our approach

We propose to explicitly represent similarity between DNA or

protein sequences (hereafter called genes) as a network.

Sequence similarity networks were first proposed in a study con-
ducted by Tatusov et al. (1997) and used for larger scale studies in

the study conducted by Enright et al. (2002). This approach en-
ables to apply efficient graph theory concepts and tools to mine

similarity information (Atkinson et al., 2009; Halary et al., 2009;

Song et al., 2008; Tordai et al., 2005). We propose a new charac-
terization of families of composite genes, with a robust and fast

method of detection, well-suited for the automatic analysis of

large datasets, without using an a priori distinction on the datasets
from which families of composite genes may be identified.
We also unify the existing methods for composite gene detec-

tion by transposing them into a sequence similarity network.

This enables us to compare our new tool called MosaicFinder
with the existing gene-centred approach, which we call

FusedTriplets. MosaicFinder not only directly groups composite

and component gene families but also reduces the risk of out-
putting a large number of false positives. In such searches,

questions of macro-evolution should be addressed with a care-
fully selected dataset (e.g. introducing sequences from genomes

that are representatives from the many taxonomical groups

under comparison).

2 METHODS

2.1 Preliminary notions

A graph G ¼ ðV,EÞ is a set of vertices V and a set of edges E that link

some pairs of vertices together (our graphs are undirected). Sequence

similarity networks are graphs with sequences (or genes) as vertices,

connected by edges when they are found to be similar by a pairwise

comparison method (Smith and Waterman, 1981), BLAST (Altschul

et al., 1990) and BLAST-Like Alignment Tool (Kent, 2002). Two vertices

are adjacent if they are linked by an edge, i.e. two sequences are adjacent

if they are similar. The neighbourhood of a vertex x is the set N(x) of

vertices that are adjacent to x (x not included). Given a subset X of

vertices, we will call common neighbourhood of X, denoted CN(X), the

intersection of the neighbourhoods of all the vertices of X [i.e.

CNðXÞ ¼
T

x2X NðxÞ]. Hence, the common neighbourhood of a set of

genes F (e.g. a gene family) is the set of sequences in the dataset that

are similar to every sequence of F, sequences of F excluded. A clique (also

called complete subgraph) is a set of pairwise adjacent vertices. A set of

genes F is a clique if for every pair of sequence ðu, vÞ in F, u and v are

similar. It usually means that sequences in F have a conserved homolo-

gous region in common. A graph is connected if there is a path between

any pair of vertices. A connected component is a maximal connected sub-

graph. Note that two sequences in the same connected component may

not have any homologous region in common (Fig. 2). A separator is a set

of vertices whose removal increases the number of connected compo-

nents. A clique separator is a separator that is a clique. A clique minimal

separator (which we will shorten to CMS) is a clique separator, which is

minimal for the separation of two given vertices (the reader is referred to

Berry et al., 2010 for graph definitions and details on CMSs).

Typically, a sequence similarity network can be reconstructed for a

large dataset by connecting genes that are related in a BLAST

(Altschul et al., 1990) search, with an E-value score better than a

user-defined threshold. Sequence similarity networks are graphs with

sequences (or genes) as vertices, directly connected by edges when they

show a similarity greater than a user-defined threshold. For a given com-

parison between two sequences, the alignment, score and E-value are not

symmetric. They can vary depending on which sequence is used as the

query. The network is symmetrized by considering the best match of

each pairwise comparison. As the greatest asymmetry is found in the

better-scoring comparisons [i.e. at a much more stringent threshold

than the ones used for network reconstruction (Atkinson et al., 2009)],

this procedure does not impact the topology. Thus, the structure of this

network captures much of the history of gene evolution: not only classical

divergence by point mutations but also recombinations, fusions and fis-

sion events (Adai et al., 2004). Conserved families of genes with a single

common ancestor are all connected to each other in a connected compo-

nent of the graph (unless they evolved beyond recognition by BLAST).

They form cliques of sequences in the network, which are aligned over

most of their length. Divergent families will form less densely connected

groups of vertices because the common ancestry between some pairs of

their genes is less frequently detected.

2.2 FusedTriplets: implementation of the

gene-centred method

As explained in the introduction and by Figure 1, a composite gene is

characterized in the similarity network by connecting two component

genes that are not adjacent, and which are similar to disjoint parts of

the composite gene. This leads to the following steps to identify fused

triplets: enumeration of all non-transitive triplets of genes and cross-check

of the absence of similarity between component genes and test of their

alignment overlap along the composite gene.

We cross-check the absence of similarity between component genes in

the same way as Yanai et al. (2001). It simply consists of testing whether

they remain dissimilar at a more permissive threshold than the one used

for triplet enumeration. For example, if one considered component and

composite genes similar if E� value � 1e� 10, one can test whether

component genes have an E� value � 1e� 5 to make sure that they

are dissimilar [see Atkinson et al. (2009) for the effect of the threshold

on similarity network topology]. This method presents the great advan-

tage that it requires no further computation, as it only uses the similarity

network information.

We reject triplets whose component gene alignment along composite

gene overlap by420 amino acids (as in Yanai et al., 2001). This small

overlap is allowed because BLAST alignments tend to extend slightly

beyond homologous regions.

We implemented these steps in the Python script FusedTriplets.

Fig. 2. (A) Multiple alignment of composite genes (white) and compo-

nent genes (grey and black). (B) Similarity network of those genes. The

white vertices form a composite gene family. They are a clique minimal

separator of the network. The black vertices and the grey vertices form

two separate component families
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2.3 MosaicFinder

When exploring a large dataset including several genomes, there may be

several representatives of a given fusion event, which we would want to

group into composite and component gene families. Rather than doing

this grouping a posteriori from the results of a gene-centred approach, an

interesting prospect is to identify those families directly in the similarity

network (Fig. 2).

A family of composite genes has the particularity to link otherwise

non-connected groups of nodes. The characteristic non-transitive pattern

of composite genes extends to families. We propose to characterize a

composite gene family as a CMS of the sequence similarity network

(Berry et al., 2010). A composite gene family is a separator, as its removal

disconnects component gene families. It is minimal, as every composite

gene is similar to the components. The additional condition that the

separator is a clique describes the requirement that the family of compos-

ite gene is conserved. It should be noted that a composite gene that is the

only representative of its family will be identified, as a clique minimal

separator of size one.

For all these reasons, CMS is a good model to identify composite gene

families. In addition, CMSs present several interesting properties: the

number of CMSs bounded by the number of vertices, and an exact

polynomial-time algorithm exists to identify them. MosaicFinder works

in several consecutive steps, which are detailed later in the text.

STEP 1: Construction of the similarity network

MosaicFinder takes the result as input of all-against-all BLAST

comparisons between the sequences under study, in the form of a

simple flat-table, including information about the region that aligns

between pairs of sequences (BLAST qstart, qend, sstart, send). To deter-

mine whether two sequences are similar, MosaicFinder relies on a pair

of similarity scores, the ‘E-value’ and ‘percentage of identity’ of these

two sequences. The results are then represented as an undirected

network G ¼ ðV,EÞ, where V is the set of sequences, and edge is

ðu, vÞ 2 E if the similarity score Suv or Svu is higher than a user-defined

threshold.

STEP 2: Identification of fused gene families

A graph algorithm (Berry et al., 2010) is then applied to find

clique minimal separators in this network and to propose candidate

families of composite genes. This is the central and longest step of

MosaicFinder.

STEP 3: Identification of component families

The component families are then identified by disconnections in the

common neighbourhood of each CMS. This common neighbourhood

does not contain the nodes from the separator. It, therefore, contains

several connected components, which we defined as component families.

Figure 3 illustrates this process.

STEP4:Cross-checking similarity between component families (optional)

MosaicFinder optionally tests component families for distant

homology. A simple way to verify the absence of any similarity between

component families is to test whether they remain disconnected with a

more permissive threshold of identity than the threshold used to identify

the CMS. It should be stressed that the gap between the two thresholds,

and not the absolute value of the permissive one, ensures that component

families are not distant homologs. This test is optional because a discon-

nection between two component families is already robust. Furthermore,

raising the BLAST score can increase the risk of detecting false positives,

especially for an E-value beyond 1e-3 (Fokkens et al., 2010) and for

large datasets.

STEP 5: Use of alignments to eliminate false positives

Undetected distant homologues in the common neighbourhood of a

CMS may still lead to an overestimation of the number of component

families and composite gene families. MosaicFinder further tests

for the presence of such distant homologues using information about

the regions that align in BLAST comparison between vertices from the

CMS and vertices from their common neighbourhood. There is a false

positive when the different component families align in the same region

of a candidate composite gene because such a significant overlap in

an alignment suggests that homology between sequences of different com-

ponent families was undetected. As different genes from a component

family F may align to slightly different parts of a potential composite

gene v, we used the median alignment of F along v, defined as follows.

The start position of the median alignment of F along v is the median

over all start positions of alignments of F family members along gene v,

and the end is similarly the median over all end positions. MosaicFinder

rejects a candidate composite gene if the median alignment of different

component families overlaps on420 (by default) amino acids. This small

overlap is allowed because BLAST extends alignments as far as possible,

and small non-homologous flanking regions may artefactually align.

Otherwise, the composite gene is accepted, and a ‘fusion point’ is calcu-

lated as the middle point between the median alignments of each

component families.

STEP 6: Output

MosaicFinder outputs a table of genes and gene families involved in

fusion events. This table indicates the fusion event that genes are involved

in, and their groupings into composite or component families. It add-

itionally indicates a fusion point for composite genes.

3 RESULTS

We implemented MosaicFinder and FusedTriplets, which we

used to compare the detection of composite gene families with
the existing methods for detecting composite genes. As there

exists no large manually curated database of composite genes
to use as a test bed, we simulated the evolution of composite

genes and composite gene families to test the accuracy of
MosaicFinder.
We also ran tests on real databases, but we have less informa-

tion on the validity of our (or other) methods in this context.
We focused our attention on the number of composite genes

detected.

3.1 Test of MosaicFinder on simulated composite

gene families

We simulated the evolution of component and composite gene

families under various evolutionary circumstances to test and
compare the sensitivity and specificity of MosaicFinder and

FusedTriplets in their detection of composite genes (Fig. 4).

Fig. 3. (A) White nodes are a clique minimal separator. Black nodes

are its common neighbourhood. Note that some grey nodes may be

connected to the separator but not be in its common neighbourhood.

(B) The subgraph of the CMS common neighbourhood contains two

connected components, which define its component families. Note that

component families are not required to be fully connected
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We used Seq-Gen (Rambaut and Grass, 1997) to simulate the
evolution of component families, under the Whelan and
Goldman model of amino acid substitution and a site-specific

rate heterogeneity following a continuous gamma distribution
(� ¼ 1). Ancestral sequences of 300 amino acids were generated
randomly for each component family. These sequences were then

evolved along perfect (complete) binary trees with five levels, i.e.
symmetric and balanced trees with 25 ¼ 32 leaves at the fifth
level, resulting in component families with 32 genes. We explored

the effect of gene family divergence on composite gene detection
under the hypothesis that the more divergent gene families are,
the harder they are to detect. We produced gene families with

different degrees of divergence as follows. We scaled these ultra-
metric phylogenetic trees with Seq-Gen (option -d) so that the
total length of a tree can be measured as the distance from the

root to any of the leaves in units of mean number of substitutions
per site (MNSS). Typically, a tree of length 2 MNSS resulted

in conserved families with all pairs of sequences presenting an
E-value of �1e-10 (therefore, corresponding gene families form-
ing cliques in a gene network reconstructed at that threshold).

By contrast, trees of length 5MNSS resulted in divergent families
in which homology between many pairs of sequences was no
longer detectable by BLAST. In these rapidly evolving trees,

99% of all pairs of maximally distant sequences presented an
E-value of �1e-10 and 90% an E-value of �1e-5. To cover the
range from highly conserved to highly divergent gene families, we

explored 14 evolutionary rates, from 0.5 to 7 with a step of 0.5
(parameter 1). We generated simulated fusion events from a pair
of component families evolving at the same evolutionary rate.

A pair of sequences evolving along these trees was chosen at
the same distance from the tree root [fusion level from 0 to 5
(parameter 2)]. We used this pair of sequences to create a novel

300 amino acids composite sequence made of 10–50% of the first
sequence fused with 90–50% of the second sequence (param-
eter 3). This ancestral composite sequence was then evolved

along a third perfect binary tree with five fusion levels, so that

genes from composite and component gene families had under-
gone the same number of diversification events starting from
ancestral component sequences (Fig. 4). The composite family

was evolved at the same 14 evolutionary rates (parameter 4) that
were used for the component families, thereby producing highly
conserved to highly divergent composite families. For recent

fusion events (fusion level¼ 0), the composite sequence was left
unmodified. This protocol was repeated 10 times for each com-

bination of the four parameters. We, therefore, simulated
10 � 14 � 6 � 5 � 14 ¼ 58:800 fusion events.

3.2 Result on simulation

For each simulated fusion event, we compared all pairs of
genes from this dataset with BLASTp (E-value of �1e-5). We

searched the resulting similarity network with MosaicFinder,
FusedTriplets and FusedTriplets_E10, i.e. FusedTriplets with a

more stringent 1e-10 E-value threshold and a cross-check of the
absence of similarity between component genes/families at the
original 1e-5 E-value threshold. The main explanatory param-

eters for composite gene detection results are evolutionary rates
of component and composite gene families. We analysed the
proportion of edges between composite and component genes

that were recovered in the network, for various combinations
of evolutionary rates (Supplementary Fig. S2.1). As expected,

the majority of connections between fast evolving (43 MNSS)
component and composite families were lost, which defines an
‘evolutionary zone’ within which both MosaicFinder and

FusedTriplets will work best. We compared the three methods
with respect to the proportions of detected false positives (com-
ponent genes that were erroneously identified as composite

genes) and the proportions of detected true positives (composite
genes that were correctly identified). In our simulations, all meth-
ods returned few false positives (�5%) for all combinations of

evolutionary rates. However, FusedTriplets displayed higher
proportions of false positives than FusedTriplets_E10 and

MosaicFinder, this latter seemed as the method which is
the least prone to outputting false positives (Supplementary
Fig. S2.2). Such false positives seem to arise for particular com-

binations of evolutionary rates, leading to triplets in which there
is a composite gene, located at one of the extremities of the triplet
and two component genes. This topology is obtained when the

intermediate component gene (i.e. the false positive) is connected
on the one hand to its homologue (the other component gene)

because of some sequence similarity that is still detectable for a
given region of their sequences, and on the other hand to the
composite gene via a different region of its sequence. As gene

networks based on real data often connect sequences through
partial regions of similarity, the analysis of real data may
result in the detection of such false positives. These results

strongly suggest that it is generally a good idea to use two thresh-
olds with different stringencies in the detection of candidate com-

posite genes, in analyses with FusedTriplet. Regarding the
detection of true positives, there seemed to be ‘evolutionary
zones’ in which all three methods recovered significant pro-

portions of composite genes in our simulations (Supplementary
Fig. S2.3.A). However, on closer examination, within
these zones, the methods performed differently. First, we

compared FusedTriplets with MosaicFinder (Supplementary

Fig. 4. Simulation of the evolution of component and composite gene

families. Two random initial sequences are evolved along five-level perfect

binary trees to produce two component gene families. Total length of

both trees is scaled by the same evolutionary rate (parameter 1). A pair of

sequences evolving along these trees is chosen at the same distance from

root (parameter 2, fusion level). A given percentage (parameter 3) of the

first sequence is fused with a fragment of the second sequence to create

a new composite sequence of the same length. This sequence is evolved

along a perfect binary tree with five fusion levels, scaled by a given evo-

lutionary rate (parameter 4) to produce the composite gene families. In

this figure, component families are divergent (tree length � 5 MNSS),

whereas composite family is conserved (tree length � 2)
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Fig. S2.3.B). Logically, MosaicFinder returned less true positives
than FusedTriplets because MosaicFinder cannot detect candi-
date composite genes that are not also proposed by

FusedTriplets. However, FusedTriplet_E10 (less sensitive than
FusedTriplets to false positives, as described earlier in the text)
is less efficient for detecting composite genes than MosaicFinder.

Therefore, using MosaicFinder to analyse large datasets seems
as a good trend. Overall, MosaicFinder is more robust than

FusedTriplet, as it produces almost no false positives and suc-
cessfully detects composite genes and groups them into families.
We also investigated how other parameters (percentage of fused

material from the component genes, fusion levels) affected the
detection of false positives and true positives by these three meth-
ods (Supplementary Fig. S3). We observed that composite genes

simulated in more recent events were more frequently detected
than composite genes simulated in older events by all methods,
and especially by MosaicFinder (Supplementary Fig. S3.3).

Likewise, composite genes simulated in more balanced fusion
events (e.g. when composite genes received fragments of similar

sizes from the component genes) were more frequently detected
than composite genes simulated in less balanced fusion events by
all methods (Supplementary Fig. S3.5). This was expected be-

cause it is harder for any method to detect similarity between
composite genes and component genes on shorter fragments, but
FusedTriplet_E10 was more affected by this problem than the

other methods. Regarding the fusion points, we find that
MosaicFinder accordingly estimates the position of the fusion

points. In all, 94% of the computed fusion points are 55
amino acids away from the true fusion point, and 99%
516 amino acids away. This variation is due to the imprecision

of BLASTp alignments. Those numbers validate a posteriori the
20 amino acids overlap allowed between component families on
composite genes.

3.3 Biological results

Our analyses of a real large dataset (591.439 sequences from the
three domains of life and from mobile genetic elements, such
as viruses and plasmids) with MosaicFinder extended our know-

ledge on the evolution of composite gene families. First,
it showed that all types of genomes, whether they come from
cellular organisms or from their mobile genetic elements, are con-

cerned by the process of gene fusion (Supplementary Fig. S4).
Eukaryotic genomes are significantly much more affected by this

process than prokaryotic genomes and genomes of mobile elem-
ents; however, when the focus of the analysis is limited to the
evolution of prokaryotes and their mobile genetic elements, these

latter, in particular the plasmids, can be showed to be critically
involved in that process. An excess of families of composite genes
are found on plasmids, suggesting that these important vessels of

DNA mobility are involved in the creation and/or the distribu-
tion of composite genes. This conclusion is consistent with the

literature that claims that genomic evolution cannot be accur-
ately described without taking the role of these infracellular enti-
ties into account (Bapteste and Burian, 2010; Bapteste et al.,

2012; Halary et al., 2009). Moreover, our implementation
allowed us to study the triplets centred on composite genes
detected by MosaicFinder (Supplementary Fig. S5), offering an

additional way to investigate the respective contribution of

cellular entities and mobile genetic elements to the process of
gene fusion. When sequences from all genomes are analysed,

53% of these triplets only connect genes from cellular organisms;
yet, when the focus is on the genomes of prokaryotes and mobile
genetic elements, this proportion logically drops to 42% (because

of the removal of intra-eukaryotic fusions). This result is consist-
ent with our previous observations and is remarkable because it
means that although a small majority of gene fusions apparently

exclusively involves the genetic material from cellular organisms
(when eukaryotic genomes are taken into consideration), a very

large fraction of gene fusion events detected in that dataset have
possibly involved the contribution of at least one mobile genetic
element. An analysis of these triplets at a finer scale further sug-

gests that mobile genetic elements were likely providers of some
DNA for up to 39% of these fusions (which can be deduced from

the sum of the percentages of triplets in which at least one se-
quence of mobile genetic element is at least at one of the extremi-
ties of the triplets), and that mobile genetic elements were possibly

carriers of composite genes for up to 20% of these fusions (as can
be deduced from the sum of the percentages of the per cent of
triplets in which the composite sequence is carried by a mobile

genetic element). When only genomes of prokaryotes and mobile
genetic elements are considered, mobile genetic elements seem to

act as providers of DNA/carriers of composite genes in up to 48/
25% of the gene fusions, respectively. The functions of these com-
posite genes are described in Supplementary Figure S6.

We also built datasets of various sizes, composed of 1–30 pro-
karyotic complete genomes, to search for composite and compo-
nent genes. Figure 5 presents the number of composite gene

triplets and triplets of families output by FusedTriplets and
MosaicFinder, respectively, compared with the number of

edges between sequences. FusedTriplets outputs an enormous
amount of fused triplets (up to 11 millions), whereas
MosaicFinder outputs only up to 1821 fusion events.

FusedTriplets outputs up to 5339 potential composite genes for
the biggest dataset (note that a given composite gene can corres-
pond to many different triplets), whereas MosaicFinder finds

2490 unique composite genes. Most composite families (1313)

Fig. 5. Comparison of the number of edges between sequences, the number

of identified composite families by MosaicFinder and the number of iden-

tified composite triplets by FusedTriplets (logarithmic scales)
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identified by MosaicFinder contain only one sequence. Of the

remaining 508 fusion events, for 349 composite gene families, we

could only detect one representative sequence of one of the two

component families involved in the event. Thus, 159 detected

fusion events (amounting to 985 composite genes) involved com-

posite and component gene families with more than one se-

quence. These numbers show the great number of potentially

misleading fusion events, and the interest of MosaicFinder is

to identify them.

4 DISCUSSION

We proposed a new characterization of families of composite

genes, as clique minimal separators in sequence similarity

networks, and implemented this method into the Cþþ program

MosaicFinder. We showed that on simulated data,

MosaicFinder identifies conserved composite gene families well.

Even if MosaicFinder was not designed to do so, it also identifies

the evolutionary conserved fraction of composite genes from

divergent families. In cases where divergent genes have evolved

too much to show similarity to both component families,

MosaicFinder proves to have a very low false positive rate.
We show that MosaicFinder gives good results quickly, with

the advantage that genes are grouped into families, thus avoiding

the extra work of regrouping the composite genes after they

are output. Moreover, this information may be visualized as

an annotated graph using Cytoscape (Shannon et al., 2003).

Supplementary Figure S7 gives an example.
According to our results from Section 3, MosaicFinder gener-

ates few false positives. Since in the real dataset constructed with

30 complete prokaryote genomes, MosaicFinder detected the

impressive rate of one fusion gene of 33 genes, we can conjecture

that in real data, there are in fact many composite genes.

Future work consists in breaking up long cycles with a local

approach, as long cycles may mask fusion families by connecting

component families indirectly (Supplementary Fig. S8).

5 SOFTWARE

MosaicFinder is based on the graph theoretic tool of clique

separator decomposition. MosaicFinder is reliable for studying

fusion events for phylogenetic research as well as for func-

tional biology. The program has been developed in Cþþ.

FusedTriplets is a Python script that generalizes previous

approaches to find composite genes, based on sequence similarity

network abstraction. Both programs are freely available with

their source code at this address http://sourceforge.net/projects/

mosaicfinder/.
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