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Abstract

In order to study complex microbial communities and their associated mobile genetic elements, such as the human gut microbiome,

evolutionists could explore their genetic diversity with shared sequence networks. In particular, the detection of remarkable structures

in gene networks of the gut microbiome could serve to identify important functions within the community, and would ease comparison

of data sets from microbiomes of various sources (human, ape, mouse etc.) in a single analysis.
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Introducing exploratory studies

The vast majority of genetic diversity is currently unknown.

Most of it comprises mobile elements (phages and plasmids)

and microbial communities that cannot be cultured under

laboratory conditions. This situation also occurs for the

human gut microbiome, a complex ‘organ’ (or ecosystem)

with about 100 times as many genes as the human genome,

about 70% of the protein coding genes without known

homologues [1], a resident population of mobile genetic ele-

ments, and a high turnover of at least some of its

members, of which 80% are uncultured. With so many

unknowns in a biological system scientists can expect many

original discoveries. For example, studies of the gut microbi-

ome could unravel new gene forms, motifs, processes, func-

tions, interactions and multi-level organizations affecting

genetic diversity, and unravel links between the environ-

ment, diet, composition and function of the microbiome.

How to enhance these discoveries is a particularly motivat-

ing issue.

One strategy to handle massive amounts of unknowns and

an overwhelming wealth of data is called exploratory studies.

Such studies go from (microbiome) data to hypotheses and

rely heavily on the experimental design of most inclusive

methods of genetic diversity, which seek for patterns in huge

data sets with the fewest assumptions possible to ease the

discovery of unrecognized regularities, phenomena and inter-

actions. The assumed goal of exploratory studies is to foster

the discovery of many unrecognized patterns and to actively

generate novel hypotheses, in our case about genetic diver-

sity [2]. In this approach, biologists do not know what types

of results they will find, but can expect truly ‘original’ find-

ings. As such, exploratory approaches differ from standard

(or targeted) approaches that go from hypotheses to

(microbiome) data and either support or reject pre-existing

hypotheses.

In evolutionary biology, the standard approach is centred

on the reconstruction of species and gene trees to organize

the analysis of genetic diversity. The tree hypothesis a priori

constrains the patterns and the processes to be identified

and the discoveries to be made in a data set (e.g. genealogi-

cal relationships between taxa and genes in the microbiome).

However, ecosystems like a microbiome with 10–100 trillion

cells do not fit on a single branch on a tree. Moreover,

transfer of genetic material between the mobile elements

and the various lineages occupying the gut also creates an

important evolutionary dynamic that is poorly captured by a
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tree-based model [3,4]. Consequently, we argue that

exploratory evolutionary analyses, letting go of some phylo-

genetic assumptions, could be a desirable option to study

the gut microbiome. We introduce a less constrained

approach based on networks that could enhance (evolu-

tionary) discoveries about gut microbiomes.

Exploring genetic diversity with networks

Network-based methods based on sequence similarities have

recently started providing fast and heuristic pictures of

genes, genome evolution and the evolution of communities

for various microbes, mobile elements and environments [5–

11]. Such networks are graphs connecting nodes by edges,

when the objects at the nodes share some similarity in their
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FIG. 1. Scheme of shared sequence networks. Nodes are indicated

by circles, edges by links between the circles.

FIG. 2. Sample of the gene network for the human gut microbiome. Two sequences (nodes) are connected when they share significant homol-

ogy (a BLAST threshold of <1e-5 and at least 20% identity in their aligned portions). Individual gene families correspond to separated subgraphs

(connected components) with red/blue nodes for sequences from the Japanese/American gut microbiomes, respectively. Sequences of integrons,

phages and plasmids are indicated in green, pink and black, respectively. The letter c illustrates potential conserved families, the letter d potential

divergent families, and the letter R potential recombined families.
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sequences (Fig. 1). For instance, in genome networks, two

nodes (genomes) are connected when they share at least a

gene family (i.e. two genomes of Escherichia coli, each with a

copy of a glucose dehydrogenase, will be connected). In gene

networks [5], two nodes (individual sequences) are con-

nected when they display more than a certain threshold of

similarity (i.e. two glucose dehydrogenases will be connected

when their reciprocal best BLAST score is <1e-5 and/or

when they display >70% sequence identity). Importantly,

within a gene network, many disconnected subnetworks are

obtained, because many genes families are unrelated (i.e. glu-

cose dehydrogenases have no homology with ribosomal pro-

teins), therefore defining distinct connected components.

Using MetaGeneAnnotator [12], we predicted 311 265/

195 521 genes in Japanese [1] and American [13] gut micro-

biomes, respectively. To study the evolution of their genetic

diversity, they were included in a gene network with

sequences of all the phages, plasmids and integrons publicly

available (for a total of 748 688 sequences). The resulting

network showed a huge genetic diversity, identifying con-

nected components of various sizes and shapes (Fig. 2). Since

networks are mathematical objects, the topology of these

various connected components can be exploited to sort the

connected components (hence the gene families) by describing

the connectivity and relationships of their nodes, as well as

their coefficient of clustering. Using such centralities, it is

straightforward to identify various types of gene families:

conserved ones, divergent ones, recombined ones etc. (Fig. 2;

see also for an instance of a conserved family the translation

initiation factor I, of a divergent family the type V secretory

pathway proteins, of a recombined family the type I restriction

endonuclease S subunit in Fig. 2 in [11]).

Connected components can also be sorted based on their

composition (i.e. when they comprise only sequences from

Japanese or American gut microbiomes, or from both of

these microbiomes). This sorting, although still based on a

limited data set, shows a very high genetic diversity in the

human gut microbiome: only 39% of the 118 489 ‘American’

genes and the 207 443 ‘Japanese’ genes fell in shared gene

families; 16 991 of the gene families that produced connected

components (35% of the data) were only found in Japanese

gut microbiomes; 12 644 (26% of the data) were only found

in American gut microbiomes. The latter numbers are

certainly too large to imagine that finding gene families in

Japanese gut microbiomes simply reflects differences in diet.

Not all such genes, if any, may be ‘sushi genes’ [14].

(a)

(b)

FIG. 3. Typical connected components for genes involved in different functions. (a) Three connected components of genes involved in the

metabolism of carbohydrates, from left to right. (b) Three connected components of genes involved in the metabolism of cell motility and che-

motaxis, from left to right. The nodes in brown were annotated to fulfil these functions using MG-RAST; nodes in grey had no known functions.
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Processes and functions structure the

evolution of genetic diversity

Interestingly, in our network, 8.8% of the connected compo-

nents (4296 gene families) mixed sequences from the human

gut microbiome with sequences from mobile elements, sug-

gesting that these gene families may be mobile. If so, plas-

mids and associations of mobile elements appear to play a

prevalent role in the mobilization of genes in human gut

microbiomes. Remarkably about 10% of the mobile genes

are carried not only by one type of DNA vehicle (phage,

plasmid or integrons) but by many. These results confirm

that lateral gene transfer plays an important role in the

convergence and expansion of the gene sets of gut micro-

biomes. Also, the presence of some particular genes and

functions may be more important than the presence of

some particular species in the gut microbiome. Thanks to

the mobility of these gene families the song (the function)

sometimes matters more than the singer (the species that

fulfil the function), as the singer can be replaced [15]. If true,

function and gene transfer structure genetic diversity in gut

microbial communities.

The latter claim seems supported when connected com-

ponents are sorted by function. Some gene families with

different functions evolve differently in the gut microbiome:

they present different topologies. For instance, gene fami-

lies involved in the metabolism of carbohydrate are much

more diversified (e.g. large diameter, higher number of

nodes) than gene families involved in cell motility and che-

motaxis, which present smaller connected components with

a very reduced diversity (Fig. 3). This result reflects that

carbohydrate metabolism is much more important than cell

motility in the gut (since the uptake of carbohydrate

imposes a regular selective pressure on gut microbial com-

munities, while bacteria are naturally stirred up in the

guts). What is exciting then is to further explore gene

networks of the microbiomes to determine what other

functions are associated with the other most diverse con-

nected components, and to include always more micro-

biome data in the analyses.
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