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Abstract

Genes evolve by point mutations, but also by shuffling, fusion, and fission of genetic fragments. Therefore, similarity
between two sequences can be due to common ancestry producing homology, and/or partial sharing of component
fragments. Disentangling these processes is especially challenging in large molecular data sets, because of computational
time. In this article, we present CompositeSearch, a memory-efficient, fast, and scalable method to detect composite gene
families in large data sets (typically in the range of several million sequences). CompositeSearch generalizes the use of
similarity networks to detect composite and component gene families with a greater recall, accuracy, and precision than
recent programs (FusedTriplets and MosaicFinder). Moreover, CompositeSearch provides user-friendly quality descrip-
tions regarding the distribution and primary sequence conservation of these gene families allowing critical biological
analyses of these data.
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Genetic sequences evolve through multiple processes beyond
point mutations. In particular, the remodeling of genes by
shuffling of genetic fragments, fusion, and fission, as well as de
novo gene emergence, contributes to the creation, and diver-
sification of gene families (Kawai et al. 2003; Moore et al. 2008;
Kaessmann 2010; Marsh and Teichmann 2010; Wu et al. 2012;
Promponas et al. 2014; Bornberg-Bauer et al. 2015; McLysaght
and Guerzoni 2015; Ruiz-Orera et al. 2015; Guerzoni and
McLysaght 2016; Lees et al. 2016; Meheust et al. 2016).
Therefore, genetic sequences show similarity with one an-
other for diverse reasons, that is, common ancestry producing
homology, and/or partial sharing of component fragments
(Song et al. 2008; Haggerty et al. 2014). These processes
must be disentangled to understand the rules and constraints
on genes evolution. Although gene remodeling has been es-
pecially studied in eukaryotes (Kawai et al. 2003; Patthy 2003;
Ekman et al. 2007; Nakamura et al. 2007; Meheust et al. 2016)
and in cultured prokaryotes (Enright et al. 1999; Marcotte
et al. 1999; Enright and Ouzounis 2000, 2001; Snel et al.
2000; Jachiet et al. 2013), analyses of large molecular data
sets remain a computational bottleneck (Salim et al. 2011;
Jachiet et al. 2013). For instance, a large scale investigation of
how remodeled genes evolved in prokaryotes would require
comparing millions of coding sequences from the thousands
of complete genomes available, but previous detection meth-
ods are unable to handle such large data sets.

In this article, we present CompositeSearch, a memory-
efficient, fast, and scalable method to detect composite
gene families in large data sets, typically in the range of several
million sequences. Composite genes are the result of the fu-
sion of partial or complete nonhomologous DNA fragments,

called components, or as a result of fission from a larger
gene into dissociated persistent fragment (fig. 1A).
CompositeSearch generalizes the use of similarity networks
to detect composite and component gene families with a
greater recall, accuracy, and precision than recent programs,
FusedTriplets and MosaicFinder (Jachiet et al. 2013).
Moreover, it provides user-friendly quality descriptions re-
garding the distribution and primary sequence conservation
of these gene families allowing critical biological analyses of
these data, and it is used as an input for the reconstruction of
multirooted gene networks (Haggerty et al. 2014).

New Approach
Here, we present CompositeSearch, a memory-efficient, fast,
and scalable method, implemented in Cþþ, which detects
composite gene families in large data sets (typically in the
range of several million sequences). Composite genes are tra-
ditionally defined based on their apparent modularity: they
are composed of segments (i.e., components) that have
evolved separately in distinct gene families (Patthy 2003;
Song et al. 2008; Jachiet et al. 2013). Under this definition,
composite genes can be the result of fusion of components,
or involved as progenitors in fission events, after which asso-
ciations of components are split in separate gene families.
CompositeSearch generalizes the use of sequence similarity
networks (SSN) to detect composite and component gene
families. SSN are undirected graphs, where each node repre-
sents a unique sequence and each edge represents the sim-
ilarity between connected sequences (given similarity criteria,
such as a minimum percentage identity, BLAST E value;
Altschul et al. 1990 and minimum mutual coverage, i.e., the
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minimal length covered by the matching parts with respect
to the total length of each compared sequence) (Jachiet et al.
2013; Corel et al. 2016). For a given comparison between two
sequences, the alignment, score, and E value are not symmet-
ric. They can vary depending on which sequence is used as the
query. Thus, the network is first symmetrized by considering
the best match of each pairwise comparison. As the greatest
asymmetry is found in the better-scoring comparisons (i.e., at
a much more stringent threshold than the ones used for
network reconstruction; Atkinson et al. 2009), this procedure
does not impact the topology.

This network’s structure captures much of the history of
gene evolution: not only divergence by point mutations but
also recombinations, fusions, and fission events (Adai et al.
2004; Jachiet et al. 2013). Typically, gene families form sub-
graphs with high connectivity, in which connected sequences
display significant BLAST E values� 1E�5, mutual covers
� 80%, and %ID � 30%. By contrast, superfamilies
(Atkinson et al. 2009) and composite gene families (Song
et al. 2008; Jachiet et al. 2013, 2014; Haggerty et al. 2014;
Meheust et al. 2016) introduce more complex informative
patterns in SSNs.

Using these graphs to identify composite genes and gene
families, CompositeSearch shows a greater recall, accuracy,
and precision than recent programs FusedTriplets (FT) and
MosaicFinder (MF). In short, these two programs are helpful
but limited in scope. FT cannot handle large data sets and
does not define composite gene families. MF is also unable to
analyze large data sets (due to memory and speed limita-
tions). Although it identifies composite and component
gene families, MF is only meant to find highly conserved
composite gene families that form minimal clique separators
in sequence similarity network. The “clique” condition implies
that MF misses divergent (e.g., ancient or fast evolving) com-
posite gene families (whose members do not necessarily con-
nect all together in sequence similarity networks) (fig. 1B).
The “separator” condition implies that composite genes will
remain undetected for data sets with highly remodeled genes
by MF. Indeed, the repeated use of gene components intro-
duces cyclic paths in sequence similarity networks, which
turns composite families into local, but not global separators.

Beyond its larger scope and better performance,
CompositeSearch can also provide quality descriptions (ab-
sent from MF and FT) regarding the size and primary se-
quence conservation of composite and component gene
families, easing critical biological analyses of these data.
CompositeSearch is available at https://github.com/
TeamAIRE/CompositeSearch, last accessed November 2, 2017.
For a detailed description of the algorithm, see supplementary
Materials and Methods, Supplementary Material online.

Results

Benchmark on Simulated Data
We tested and compared CompositeSearch with FT and MF
(Jachiet et al. 2013) on 100 replicates of simulated data, cov-
ering a large range of parameters and simulating 2-compo-
nents and 3-components composites (supplementary fig. S4
and Materials and Methods, Supplementary Material online).
We explored the effect of gene family divergence and multiple
component reassortments on composite gene detection un-
der the hypothesis that the more divergent gene families are,
the harder they are to detect. The sensitivity and specificity of
each program were summarized in supplementary table S1,
Supplementary Material online. In terms of detection of com-
posite genes, CompositeSearch performs as well as FT, with
identical True Positive Rate (TPR) and False Positive Rate
(FPR), but, unlike FT, CompositeSearch returns composite
gene families. However, CompositeSearch has higher TPR
than MF, especially for divergent composite sequences,
with a similar 1% FPR. Therefore, CompositeSearch will find
additional composite genes with respect to MF, thanks to the
detection of composite genes forming quasi-cliques. As
CompositeSearch is able to detect the number of compo-
nents for each composite, we created a more detailed table
(supplementary table S2, Supplementary Material online)
showing the sensitivity and specificity of CompositeSearch
to detect the exact number of components.

Benchmark on Real Data
We also used a data set of 204,894 viral proteins from (Jachiet
et al. 2014) to benchmark our software against real data.
CompositeSearch detected 21,623 composite genes clustered
in 5,532 families, vastly outperforming MF (5,845 composites
in 1,718 families). FT found slightly more composites (23,305),
but did not return any families. This slight increase in the
number of composites detected by FT was mainly due to
BLAST overextending matches on real data, thus producing
false positives.

Performances
Because its algorithm uses a dichotomous search to browse
the network and because it is multithreaded,
CompositeSearch outperforms both FT and MF in terms of
speed and memory use, when these parameters are con-
trasted on a Linux machine with Intel Xeon CPU E5-2630
v2 2.60-GHz processors and 256 GB RAM, even on one
CPU. This is especially noticeable for large metagenomic
data sets (table 1). By contrast, construction the SSN
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FIG. 1. (A) Top: Example of a composite gene. Gene family 3 evolved
from a composite of families 1 and 2. Bottom: Sequences from family
3 partially align with sequences from families 1 and 2. (B) Similarity
network of a composite gene family (red) and its component gene
families (green and purple). MosaicFinder will detect only the top
case where composite genes form a clique, whereas CompositeSearch
detects composite gene families forming a clique (top) or quasi-clique
(bottom).
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composite genes and composite gene families detection runs
in a few second to few minutes depending on the network’s
size.

Discussion
CompositeSearch is an efficient tool that detects composite
genes and composite gene families. It allows investigating the
process of gene remodeling in large data sets, for example
metagenomes and/or thousands of complete genomes.
Although CompositeSearch is faster than currently available
software, like FusedTriplets and MosaicFinder, it still can be
improved. We observed that in CompositeSearch, the most
time consuming step is the detection of gene families, using a
DFS algorithm than runs on a single CPU. Parallelized algo-
rithms that detect connected components are available
(Kang et al. 2009; Iverson et al. 2015), but they usually require
high computational resources. As CompositeSearch was de-
veloped with maximum portability in mind, these algorithms
are not implemented yet could be in a future version.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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